Threshold and linear model estimates of genetic and residual correlations between CM, SCC and production traits

CG2 Session 5 Enyew Negussie, Ismo Strandén and Esa Mäntysaari MTT Agrifood Research, Jokioinen, Finland enyew.negussie@mtt.fi

<u>www.mtt.fi</u>

Udder health

- Clinical mastitis
 frequent and expensive disease
- > Finland
 - Primary reason culling
 - -21% of all culled in 2003

Genetic evaluation

- > MT evaluation Accurate VC estimates essential
- > Binary nature of CM
 - not taken into account
- Linear model

- most estimates
- > Threshold model Theoretically appropriate
- > Literature r_g linear model involving binary trait
 - » Underestimation reported
- Finland New GE model for CM
 - » VC estimates from suitable methodologies

Objective

 Estimate genetic and residual correlations between CM, SCC and production traits using threshold and linear model

Traits

- SCC Lactation mean of log transformed (log_escc) test-day somatic cell count (100cells/ml)
- CM (0 / 1) Vet. records/culling due to udder diseases (7 days before and 150 days after calving)

> 305-d prod. traits - milk, protein and fat yield

- > Finnish National health + prod.
- > 119,000 1st lact. Ayrshire cows
- > First crop daughters
- > Sires at least 20 daughters
 - In total 1269 sires

Model

1. Linear model

Linear model used for CM, SCC, prod. traits
 CM considered as a continuous trait
 VC estimated using AI-REML procedure

 DMU package (Madsen and Jensen, 2002)

Model

2. Threshold model

- CM binary (threshold) & SCC, prod. traits -Gaussian
- > A threshold-liability model (Gianola, 1982) CM
- > Multivariate Bayesian approach
 - (Korsgaard, et al. 2003)
- > MCMC computations
 - Chain of 50,000 iterations, after burn-in of 5000
 - All post burn-in samples inference posterior features

General model

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \mathbf{X}_{h1} & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{h2} \end{bmatrix} \begin{bmatrix} h\mathbf{y}_1 \\ h\mathbf{y}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_2 \end{bmatrix} \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{bmatrix}$$

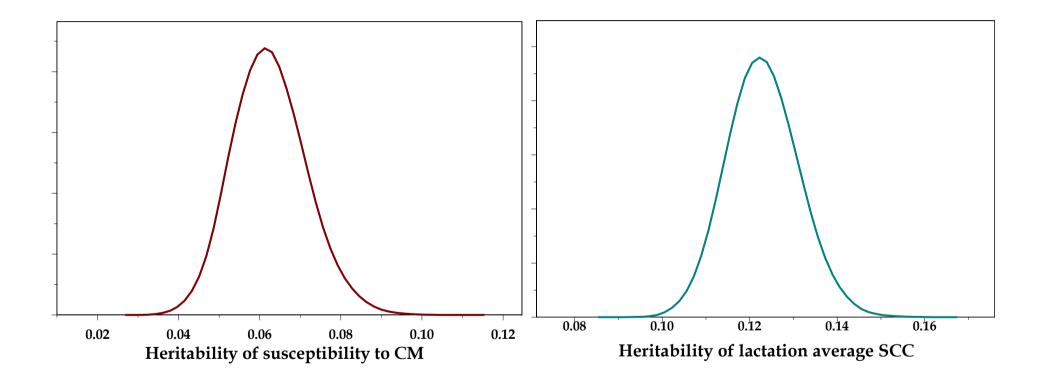
Where

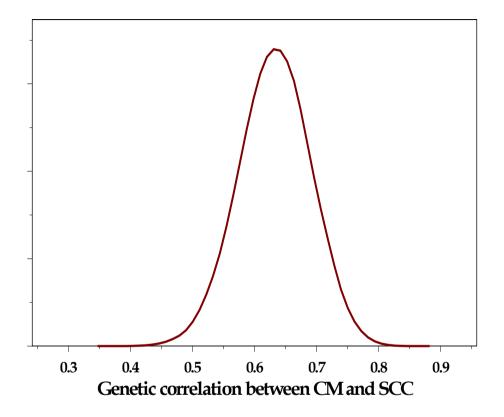
y is vector of observable continuous trait (SCC and production traits) and unobserved liabilities to CM
ß is vector of systematic effects
hy is vector of herd-3-year of calving effects

- is vector of size genetic effects
- s is vector of sire genetic effects
- e is vector of residual effects and

X, X_h and Z are corresponding incidence matrices

<u>www.mtt.fi</u>

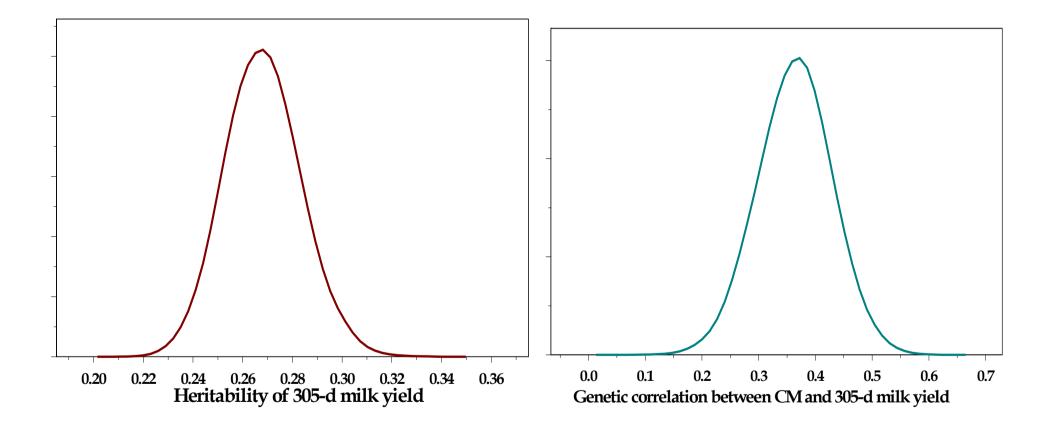

CM and **SCC**



Estimates of parameters from bivariate analysis of CM and SCC

Methods		СМ	SCC
Linear	СМ	0.020	0.628
	SCC	0.060	0.123
Threshold	СМ	0.061	0.634
	SCC	0.109	0.123

Heritabilities; on the diagonal, Genetic correlation; upper diagonal, Residual correlations; lower diagonal


CM and 305-d milk yield

Estimates of parameters from bivariate analysis of CM and 305-d milk yield

Methods		СМ	305-d MY
Linear	СМ	0.020	0.346
	305-d MY	-0.021	0.268
Threshold	СМ	0.061	0.363
	305-d MY	-0.037	0.268

Heritabilities; on diagonal, Genetic correlation; upper diagonal, Residual correlations; lower diagonal

Heritability of CM and continuous traits from linear and threshold models

Methods

	rictivus		
Traits	Linear-Linear	Threshold-Linear	
СМ	0.020	0.062	
SCC	0.123	0.123	
Milk	0.268	0.267	
Protein	0.222	0.222	
Fat	0.227	0.227	

Genetic correlation between CM, SCC and 305-d production traits

	Methods		
Traits	Linear-Linear	Threshold-Linear	
CM – SCC	0.628	0.634	
CM – Milk	0.361	0.362	
CM – Protein	0.316	0.318	
CM – Fat	0.294	0.302	

Residual correlations between CM, SCC and 305-d production traits

	Methods		
Traits	Linear-Linear	Threshold-Linear	
CM – SCC	0.060	0.109	
CM – Milk	-0.021	-0.037	
CM – Protein	-0.015	-0.027	
CM – Fat	-0.025	-0.045	

Conclusions

- NO significant difference in genetic correlation estimates from the two models
- Lower estimates of residual correlation from the linear model
- The low correlation estimate may indicate the need for alternative definition of CM trait