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Abstract

Simulated growth data with parameters appropriate for pigs were generated through a 2 step
process First, a linea mixed model was used to produce Gompertz growth curve cefficients for
eat pig. Then, 30weekly weights were produced using the wefficients. Simulated pedigreehad 3
generations withou seledion: 10 urrelated grandsires and 200sires, ead with 24tested off spring.
A method kesed on Taylor series approximation was applied to estimate breading values for curve
parameters and the crrespondng (co)variance mmporents. In every iteration, a working variate
(sum of predictions by lineaized model and a nonlinea model residual) was utilized to solve
locaion and dspersion parameters of the lineaized model. Approach required oy minor changes
to existing software for randam regresson models. In addition to data from full growing period, a
truncaed time trgjedory data was analyzed to test the gproach when animals are slaughtered
prematurely. Truncation was at Saughter weight 115ky, which reduced the number of
measurements to 11 per pig on average. From 50 replicaes with full data the bias of estimates of
three genetic variances were 1% of the parameter values, on average. For the truncaed data bias
increased to 196 and -23% for first and third parameter. Results of this dudy indicaed the
cgpability of lineaization approad to estimate original parameters stisfadorily for full data, but
not aswell for truncated data.

1. Introduction

Growth of animal is often dacumented by measuring several longitudinal observations in time urtil
adult weight is attained. However, field datain animal production may be incomplete. For example,
adult weight is often urevail able due to ealier aughter age. Statisticd analysis of growth data may
be most appeding by nonlinea functions, because they can describe the entire growth processin
terms of afew parameters, and predictions outside the data range can be made more reliably than by
linead models. A commonly used model is a Gompertz function, where parameters can have
biologicd meaning. However, nonlinea models are more cmplicaed to estimate than linea
models, and severa agorithms have been propcsed to solve the parameters and variance
comporents of nonlinea mixed-effeas models ([2], [4], [6], [7]).

Frequentist methods apply either numericd integration a approximation methods based on
lineaization d integral of the likelihood function. We will consider approximation based on
second-order Taylor series expansion with resped of randam effeds as presented by Wolfinger and
Lin [7]. They gave two dternative goproadhes to seled points of expansion: zero-expansion method
uses expeded value, and EBLUP-expansion method wses predicted value of randam effeds. Here,



the latter method is considered. In lineaizing methods it has been a @wmmon way to aternate
between a penalized nonlinea least-squares 4ep and a linea mixed effects gep ([2], [3]), whereas
algorithm introduced here dternates between Henderson's mixed model equations and restricted
maximum likelihood (REML) estimation d linea mixed effeds model. Therefore, using EBLUP-
expansion alows use of common methods for linea mixed effeds models and wse of existing
programs after small changes.

The presented procedure is smilar to that commonly used in animal breeding for linea traits.
Variance omporents estimated by REML are used in mixed model equations to solve locaion
parameters. Consequently, even large models and cata sets can be analysed when variance
comporents have been estimated. The alvantage of the presented methodis generality. The method
can be used for different spedal cases becauseit is developed for general nonlinea mixed models.

Aim of this work was to describe and examine performance of the EBLUP-expansion method in
animal brealing through simulation wsing the Gompertz function as growth model in pigs. The
simulation also considered estimation wsing truncated data, where slaughter weight is much below
adult weight.

2. Materials and methods

2.1 Simulation

Gompertz growth function is one of the most frequently used curves in growth mathematics. We
asumed that the weights of ead individual foll owed the Gompertz law:

Y; =0, expCp; expkit;)) +e;,
where y; is the observed weight of individual i at timej, tjisagein daysat timej, a,, B, and K, are
the parameters of the Gompertz function for the ith animal and g; is randam residual term. The
biologicd meaning of the parameter a; is the ault weight, k. is the rate of exporential decgy of

theinitial growth rate and S, isrelated to weight at birth (t =0).

Ead of the parameters a,, B, kK, was described by alinea effeds model such that full model is
Vi = (X 0y, +2, Uy +W, Pg,)
expE-(xgb, +2z,u; +W; pg)
expt(x, b, +z,u, +w, p L)) +e,
where (b, ,bg ,b, ) arefixed effeds, (u, ,u, ,u, ) arerandom genetic sire dfedsand
(Py, » Pg » P, ) @erandam nongenetic animal effeds. It is assuumed that
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where G is covariance matrix for genetic sire dfed, P is covariance matrix for non-genetic animal
effed and R is residual covariance matrix. Further, it is assuumed that G =G, O A, where Go is
3x3 additive genetic covariance matrix by anima and A is matrix of additive relationships
between animals. Similarly, covariance matrix for non-genetic animal effed P was assumed to be
identicadly and independently distributed for animal i, p, ~ N(0,P,) . Finaly, the residuals were

asaimed to beindependent, R =102.



Measurement of weight was generated in two steps, where the first step generated Gompertz
function coefficients and the semnd step the growth olservation with the wefficients. The
Gompertz model was used to analyse smulated growth data with parameters appropriate for pig
growth. (Co)Variance matrices in the simulations were for genetic sire dfea
O 10 L
G,=-006 001 .
H0.0003 0.00001 0.0000003%

and for nongenetic animal effed

0 60 C
_0_ C
P,=5-036 006 .

(0.003 0.00006 0.000002%
where the order of the Gompertz parametersis a, 8, k . Residual variance o’ was equal to ore.

Data included 4800tested animals. The pedigree had 3 generations with 10 founder grandsires.
Each of the 10 grandsires had 20 tf-sib sons which had ead 24 tested progeny. Two data sets
were made: complete and truncated time trajedory data. The complete data had 30 equally
distanced olservations between 50and 253 @ys. The truncated time data had slaughter weights up
to 115 kg which occurs at abou 120 days. This reduced the number of measurementsto 11 ger pig
onaverage, i.e., admost two thirds of the data were discarded. The truncaed time trgedory datawas
analysed to test the gpproach when animals are slaughtered before gaining adult weight. Relative
bias, standard deviation (SD) and mean squared error (M SE) were cdculated from 50 repli cates and
used as descriptive statistics in the simulation study.

2.2. Method to estimate the values of the growth parameters
General form of the nonlinea mixed model is
y=f(X,b,Z,u) +e,
where y is nx1 -vedor of observations, f is the nonlinea model function, b is px1 -vedor of
fixed effeds and u is gqx1 -vedor of randam effeds, eis nx1 -vedor of randam residual, and X

and Z are design matrices of fixed and randam effeds, respedively. Assumptions for randam
effeds are a given previously. For simplicity, denote unknovn elements of all randam and residual
covariance matrices by parameter vedor 0 .

Frequentist parameter estimation maximizes the likelihoodfunction, which in thiscaseis
n 1 q 1

L(b,0]y)=(2m) 2 |R|? (21m) 2 |G| > "
J’expﬂ—l(y L f(X.b,Z,u) Ry - F(X.b,Z,u)) - ~u"G “ufu,
a2 2 0

Only in some caes a dosed form is foundwhen dfferentiating the likelihood with resped to the
parameters. Thus, the integral is often solved numericdly. However, numericd methods for non
linea functions may be slow in conwergence and numericdly unstable. Instead, we used
approximation where the integral functionis lineaized with Taylor series expansion. The foll owing
paragraphs explain the lineaization method, which uses @ndorder Taylor expansion around
points of expeded values for the randam effeds ([3], [4], [7]).



Seoondorder expansion for the exporent part of the integral, is made aou the predicted BLUP
value before integration d the likelihood function. Thus, approximation d the logarithmic
likelihoodfunction for function (1) will be

(0,0 ]y) :—%nln(Zn)—%ln(lZ*TR‘lz*G F1[R])
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where Z* =of /ou” |,_; and T isthe empiricd BLUP-estimate of randam effeds.

Pinheiro and Bates ([ 3], [4]) used approximation d logarithmic likelihoodfunction (2) in estimation
of parameters. Thus, estimation was pendized nonlinea least-squares problem. However,

Wolfinger and Lin [7] continued evaluation o function (2). Denote V =Z'GZ" +R. Then
IVI=|R|[I+ZTR'Z°G|, V=R -R?'Z'G(1+Z"RZ'G)*Z""R™ and the logarithmic
likelihoodfunctionin equation (2) can be written

I*(b,9|y):—%nln(2n)—%ln|\7|
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Thisisthe base for estimation d locaion parameters and variance @mporents introduced below.

Asame variance ®mporent vedor 6 as known. Maximum likelihood (ML) estimation for the
parameters b and u leads to solving equations:

XTR™(y - f(X,b,Z,0)) =0 @
Z"RY(y- f(X,b,Z,0)) =G0,
where X =of/ob" and b is esimate of fixed effeds b. When dencted
Y =y-f(X,b,Z,u)+X b+Z"u, equations (4) can be written as
XTR*X XTRZ" ObH XTRYLC
*T -1 * *T 1= * -1 — *T -1 |: (5)
% R™X Z 'R7Z +G % RTY[
This is smilar to mixed model equations for linea models, and arealy established methods for
solving linea models can thus be used to analyse pseudo-data Y creaed from the original data y
with b and U equal to their most recent estimates.

After solving estimates of the locaion effeds, profile likelihood is used to estimate variance
comporents by setting b =b(0). Logarithmic likelihood function d parameter vedor 6 can be
written with pseudo-data as

MOE —%nln(Zn) —%In |V |—%(Y -X'b)"VHY —x*b)|b:5(e) . (6)
Derivative of equation (6) with resped to 6 gives

e Y Ly )y v vy X)), U
2 H 00, H 2 00,
Maximum likelihood estimates of the variance @mporents are found ly equating (7) to zero and
solving for 6.



Instead of ML-estimates, REML-estimates are commonly used in pradise. These estimates acourt
for loses in degrees of freedom caused by estimation d fixed effeds b. The logarithmic likelihood
functionisnow
. 1 1 1 Toragr 1 AT -1 s
IREML(O):—Enln(2n)—§ln|V|—§In|X VX |—§(Y—X b)' V(Y -X b)|b=5(e). (8)

Thus, equating derivative of equation (8) to zero gives

1 ovH 1 . oV .
-ZtrtP—F (Y - X'b)' VT V(Y -X"b)[, - =0, 9
where P=V 7 -VX (XTV*X")™X V™. Solutions in & are the REML-estimates of the

variance mmporents.

Approximate ML-solutions of locaion parameter effects and variance @mporents are obtained by
iteratively solving equations (5) and (7) urtil convergence Correspondngly, REML-solutions for
EBLUP-expansion are obtained by iteratively solving equations (5) and (9). Here the linea mixed
effedsmodel Y = X b +Z u +e isfitted for pseudo-dataY and working vedors X and Z", where
u~ N(0,G(0)) and e~ N(0,R(0)) .

2.3. Implementation

The presented method required implementation d the lineaization procedure to linea mixed model
program. We implemented the Gompertz growth model using cyclicadly MiX99 for solving mixed
model equations and DMU for REML estimates of covariance omporents. Crucia for
implementation is cagpability of fitting random regresson models, which opion is build in MiX99
[5] and was added in DMU by Kettunen et. al. [1].

In addition to including the necessary Gompertz function formulas to MiX99, variance mmporents
needed some reparametrization. Because variance omporent of k is close to zero, convergence
was acceerated by introducing time scding during the estimation. In every iteration round scding
fador s, equal to most recant estimated value for parameter k , was used. Thus, time t; associated
with observation j in the data was multiplied by the scding fador before starting an estimation step.
Consequently, variance mmporent estimate for the scded parameter Kk~ was larger than for the
original parameter K .

3. Results and discussion

Average number of cycles with mixed model equations lve and REML procedure were 7 for the
full datasimulation. For the truncated time trajedory data the arerage number of cyclesincreased to
11, indicding a deaease in stability. Residual error variance @nverged well and was estimated to
be dmost exadly the original value used in the simulations.

Simulation statistics for variance @mporents of genetic sire dfeds G arein Tablel. The estimated
variance omporents were in good agreement with the initial parameter values when the full data
was analysed. Analysis for truncated time trgjedory data showed larger bias, but order of magnitude
for estimated values were still reasonable with SD larger than hias. Estimated variance omponent
for parameter B agreed with original value, but for parameters a and kK bias was 19% and -23%,
respedively. This more unreliable estimation d truncated time trgedory data gpeaed aso in
standard deviations. Relative SD increased from 0.14to 0.36 onaverage for parameters o and K ,
but only to 0.18for parameter 3. For al covariance mmporents relative SDs are large. Espedally

estimation d covariancebetween a and Kk was unstable.



Estimation d (co)variance @mporents for non-genetic animal effeds Py showed simil ar results as
the genetic sire dfeds (Table Il). The estimated variance mmponrents were in good agreanent with
the true parameter values used to simulate the data, when the full data was used. When truncated
time trgedory data was anayzed, urcetainty is sen as larger bias and SD espedaly for
parameters related to a . The bias were 25%, 3% and -2% from origina values used in simulations
for parameters a, B and k , respedively. Furthermore, relative standard deviation increased ony

from 0.02to 0.04for parameters B and k , but to 0.15for parameter o . However, the magnitude

of increase in relative SD for parameter a was snall in comparison to increase in hias, so that a
huge increase in relative M SE for truncated time trgjedory data was due to large bias.

4. Conclusions

The gproximation method that used second-order Taylor series expansion for integrant of non
linea likelihood function was foundto be useful in estimation d nonlinea mixed effeds models
when growth is modelled by Gompertz function. Usually nonlinea estimation is found to be
problematic. Although the presented two-step iterative procedure with ead step itself being
iterative can be regarded as computer intensive, the alvantage is easy implementation to the
existing programs of linea mixed effeds model. Only minor changes are needed relating to
lineaization procedure. Furthermore, an advantage is the generaity of models accepted for the
method.

Results from the simulation showed good agreement with the initial values for data, which included
observations from the whale growing period. Adult weight was not readed and the latter part of the
function curve had no data, when animals were slaughtered prematurely. Espeaaly this had
influence for estimation d parameters related to adult weight. Otherwise the results from the
simulation were fairly goodalso for truncaed time trgjedory data.
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Table |. Relative bias (Rel. Bias), standard deviation (Rel. SD) and mean squared error (Rel. MSE) for (co)variance
comporents of genetic sire dfeds from the simulations for full and truncated data. Subscripts a, 8 and k dencte the three
parameters in the Gompertz function.

Full data Truncaed data
Parameter True Rel. Bias Rel. SD Rel. MSE Rel. Bias Rel. SD Rel. MSE
o’ 10.0 -0.002 0.144 0.204 0.186 0.358 1.601
Op -0.06 0.013 0.485 0.014 -0.612 0.887 0.068
02 0.01 0.020 0.130 0.002 0.001 0.180 0.0003
O, -3.0e-04 -0.054 0.650 0.0001 0.820 1.643 0.0010
O g 1.0e-05 0.078 0.496 2.48-06 -0.009 0.740 5.37e-06
o’ 3.0e-07 0.007 0.139 5.67e-09 -0.226 0.370 553e-08

Table Il. Relative bias (Rel. Bias), standard deviation (Rel. SD) and mean squared error (Rel. MSE) for (co)variance
comporents of the nongenetic animal effea from the simulations for full and truncated data. Subscripts a, § and k
denate the threeparameters in the Gompertz function.

Full data Truncaed data
Parameter True Rel. Bias Rel. SD Rel. MSE Rel. Bias Rel. SD Rel. MSE
ol 60.0 0.004 0.021 0.026 0.247 0.153 5.036
Oup -0.36 0.006 0.064 0.001 -0.519 0.281 0.125
o; 0.06 -0.002 0.018 1.88-05 0.032 0.035 1.3%-04
O 4 -0.003 -0.001 0.049 7.10e-06 -0.089 0.318 3.21e-04
O g 6.0e-05 -0.009 0.092 5.07-07 0.025 0.200 2.40e-06
ol 2.8e-06 0.003 0.021 1.24e-09 -0.022 0.045 6.82-09




