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Abstract  
Simulated growth data with parameters appropriate for pigs were generated through a 2 step 
process. First, a linear mixed model was used to produce Gompertz growth curve coeff icients for 
each pig. Then, 30 weekly weights were produced using the coeff icients. Simulated pedigree had 3 
generations without selection: 10 unrelated grandsires and 200 sires, each with 24 tested offspring. 
A method based on Taylor series approximation was applied to estimate breeding values for curve 
parameters and the corresponding (co)variance components. In every iteration, a working variate 
(sum of predictions by linearized model and a non-linear model residual) was utili zed to solve 
location and dispersion parameters of the linearized model. Approach required only minor changes 
to existing software for random regression models. In addition to data from full growing period, a 
truncated time trajectory data was analyzed to test the approach when animals are slaughtered 
prematurely. Truncation was at slaughter weight 115kg, which reduced the number of 
measurements to 11 per pig on average. From 50 replicates with full data the bias of estimates of 
three genetic variances were 1% of the parameter values, on average. For the truncated data bias 
increased to 19% and -23% for first and third parameter. Results of this study indicated the 
capabilit y of linearization approach to estimate original parameters satisfactorily for full data, but 
not as well for truncated data. 

1. Introduction 
Growth of animal is often documented by measuring several longitudinal observations in time until 
adult weight is attained. However, field data in animal production may be incomplete. For example, 
adult weight is often unavailable due to earlier slaughter age. Statistical analysis of growth data may 
be most appealing by non-linear functions, because they can describe the entire growth process in 
terms of a few parameters, and predictions outside the data range can be made more reliably than by 
linear models. A commonly used model is a Gompertz function, where parameters can have 
biological meaning. However, non-linear models are more complicated to estimate than linear 
models, and several algorithms have been proposed to solve the parameters and variance 
components of non-linear mixed-effects models ([2], [4], [6], [7]). 
 
Frequentist methods apply either numerical integration or approximation methods based on 
linearization of integral of the likelihood function. We will consider approximation based on 
second-order Taylor series expansion with respect of random effects as presented by Wolfinger and 
Lin [7]. They gave two alternative approaches to select points of expansion: zero-expansion method 
uses expected value, and EBLUP-expansion method uses predicted value of random effects. Here, 
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the latter method is considered. In linearizing methods it has been a common way to alternate 
between a penalized non-linear least-squares step and a linear mixed effects step ([2], [3]), whereas 
algorithm introduced here alternates between Henderson's mixed model equations and restricted 
maximum likelihood (REML) estimation of linear mixed effects model. Therefore, using EBLUP-
expansion allows use of common methods for linear mixed effects models and use of existing 
programs after small changes. 
 
The presented procedure is similar to that commonly used in animal breeding for linear traits. 
Variance components estimated by REML are used in mixed model equations to solve location 
parameters. Consequently, even large models and data sets can be analysed when variance 
components have been estimated. The advantage of the presented method is generality. The method 
can be used for different special cases because it is developed for general non-linear mixed models.  
 
Aim of this work was to describe and examine performance of the EBLUP-expansion method in 
animal breeding through simulation using the Gompertz function as growth model in pigs. The 
simulation also considered estimation using truncated data, where slaughter weight is much below 
adult weight. 

2. Materials and methods 

2.1 Simulation 
Gompertz growth function is one of the most frequently used curves in growth mathematics. We 
assumed that the weights of each individual followed the Gompertz law: 
 ijjiiiij ety +−−= ))exp(exp( κβα , 

where yij is the observed weight of individual i at time j, tj is age in days at time j, iα , iβ  and iκ  are 

the parameters of the Gompertz function for the ith animal and eij is random residual term. The 
biological meaning of the parameter iα  is the adult weight, iκ  is the rate of exponential decay of 

the initial growth rate and iβ  is related to weight at birth ( 0=t ).  

 
Each of the parameters iα , iβ , iκ  was described by a linear effects model such that full model is 
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where ),,(
iii

bbb κβα  are fixed effects, ),,(
iii

uuu κβα  are random genetic sire effects and 

),,(
iii

ppp κβα  are random non-genetic animal effects. It is assumed that 

 















































=

















R00

0P0

00G

0

0

0

e

p

u

,N , 

where G is covariance matrix for genetic sire effect, P is covariance matrix for non-genetic animal 
effect and R is residual covariance matrix. Further, it is assumed that AGG ⊗= 0 , where G0 is 

33×  additive genetic covariance matrix by animal and A is matrix of additive relationships 
between animals. Similarly, covariance matrix for non-genetic animal effect P was assumed to be 
identically and independently distributed for animal i, ),(N~ 0P0p i . Finally, the residuals were 

assumed to be independent, 2
eσIR = .  
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Measurement of weight was generated in two steps, where the first step generated Gompertz 
function coeff icients and the second step the growth observation with the coeff icients. The 
Gompertz model was used to analyse simulated growth data with parameters appropriate for pig 
growth. (Co)Variance matrices in the simulations were for genetic sire effect 
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and for non-genetic animal effect 
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where the order of the Gompertz parameters is α , β , κ . Residual variance 2
eσ  was equal to one.  

 
Data included 4800 tested animals. The pedigree had 3 generations with 10 founder grandsires. 
Each of the 10 grandsires had 20 half-sib sons which had each 24 tested progeny. Two data sets 
were made: complete and truncated time trajectory data. The complete data had 30 equally 
distanced observations between 50 and 253 days. The truncated time data had slaughter weights up 
to 115 kg which occurs at about 120 days. This reduced the number of measurements to 11 per pig 
on average, i.e., almost two thirds of the data were discarded. The truncated time trajectory data was 
analysed to test the approach when animals are slaughtered before gaining adult weight. Relative 
bias, standard deviation (SD) and mean squared error (MSE) were calculated from 50 replicates and 
used as descriptive statistics in the simulation study. 

2.2. Method to estimate the values of the growth parameters 
General form of the non-linear mixed model is 
 euZbXy += ),,,(f , 
where y is 1×n  -vector of observations, f is the non-linear model function, b is 1×p  -vector of 
fixed effects and u is 1×q  -vector of random effects, e is 1×n  -vector of random residual, and X 
and Z are design matrices of f ixed and random effects, respectively. Assumptions for random 
effects are as given previously. For simplicity, denote unknown elements of all random and residual 
covariance matrices by parameter vector 

�
. 

 
Frequentist parameter estimation maximizes the likelihood function, which in this case is 
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Only in some cases a closed form is found when differentiating the likelihood with respect to the 
parameters. Thus, the integral is often solved numerically. However, numerical methods for non-
linear functions may be slow in convergence and numerically unstable. Instead, we used 
approximation where the integral function is linearized with Taylor series expansion. The following 
paragraphs explain the linearization method, which uses second-order Taylor expansion around 
points of expected values for the random effects ([3], [4], [7]). 
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Second-order expansion for the exponent part of the integral, is made about the predicted BLUP 
value before integration of the likelihood function. Thus, approximation of the logarithmic 
likelihood function for function (1) will be 
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where uuuZ ~
*~

=∂∂= Tf  and u~  is the empirical BLUP-estimate of random effects. 

 
Pinheiro and Bates ([3], [4]) used approximation of logarithmic likelihood function (2) in estimation 
of parameters. Thus, estimation was penalized non-linear least-squares problem. However, 
Wolfinger and Lin [7] continued evaluation of  function (2). Denote RGZZV += T** . Then 
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likelihood function in equation (2) can be written  
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This is the base for estimation of location parameters and variance components introduced below. 
 
Assume variance component vector �  as known. Maximum likelihood (ML) estimation for the 
parameters b and u leads to solving equations: 
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where Tf bX ∂∂=*  and b
~

 is estimate of f ixed effects b. When denoted 

uZbXuZbXyY **),,,( ++−= f , equations (4) can be written as 
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This is similar to mixed model equations for linear models, and already established methods for 
solving linear models can thus be used to analyse pseudo-data Y created from the original data y 

with b
~

 and u~  equal to their most recent estimates.  
 
After solving estimates of the location effects, profile li kelihood is used to estimate variance 

components by setting )(
~ �bb = . Logarithmic likelihood function of parameter vector �  can be 

written with pseudo-data as 
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Derivative of equation (6) with respect to �  gives  
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Maximum likelihood estimates of the variance components are found by equating (7) to zero and 
solving for � .  
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Instead of ML-estimates, REML-estimates are commonly used in practise. These estimates account 
for loses in degrees of freedom caused by estimation of f ixed effects b. The logarithmic likelihood 
function is now  
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Thus, equating derivative of equation (8) to zero gives 
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where 1*1*1**11 )( −−−−− −= VXXVXXVVP TT . Solutions in 
�

 are the REML-estimates of the 
variance components. 
 
Approximate ML-solutions of location parameter effects and variance components are obtained by 
iteratively solving equations (5) and (7) until convergence. Correspondingly, REML-solutions for 
EBLUP-expansion are obtained by iteratively solving equations (5) and (9). Here the linear mixed 
effects model euZbXY ++= **  is fitted for pseudo-data Y and working vectors X* and Z*, where 

))(,(N~ �G0u  and ))(,(N~ �R0e . 

2.3. Implementation 
The presented method required implementation of the linearization procedure to linear mixed model 
program. We implemented the Gompertz growth model using cyclically MiX99 for solving mixed 
model equations and DMU for REML estimates of covariance components. Crucial for 
implementation is capabilit y of f itting random regression models, which option is build in MiX99 
[5] and was added in DMU by Kettunen et. al. [1].  
 
In addition to including the necessary Gompertz function formulas to MiX99, variance components 
needed some reparametrization. Because variance component of κ  is close to zero, convergence 
was accelerated by introducing time scaling during the estimation. In every iteration round scaling 
factor s, equal to most recent estimated value for parameter κ , was used. Thus, time tj associated 
with observation j in the data was multiplied by the scaling factor before starting an estimation step. 
Consequently, variance component estimate for the scaled parameter *κ  was larger than for the 
original parameter κ . 

3. Results and discussion 
Average number of cycles with mixed model equations solve and REML procedure were 7 for the 
full data simulation. For the truncated time trajectory data the average number of cycles increased to 
11, indicating a decrease in stabilit y. Residual error variance converged well and was estimated to 
be almost exactly the original value used in the simulations.  
 
Simulation statistics for variance components of genetic sire effects G0 are in Table I. The estimated 
variance components were in good agreement with the initial parameter values when the full data 
was analysed. Analysis for truncated time trajectory data showed larger bias, but order of magnitude 
for estimated values were still reasonable with SD larger than bias. Estimated variance component 
for parameter β  agreed with original value, but for parameters α  and κ  bias was 19% and -23%, 
respectively. This more unreliable estimation of truncated time trajectory data appeared also in 
standard deviations. Relative SD increased from 0.14 to 0.36 on average for parameters α  and κ , 
but only to 0.18 for parameter β . For all covariance components relative SDs are large. Especially 
estimation of covariance between α  and κ  was unstable.  
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Estimation of (co)variance components for non-genetic animal effects P0 showed similar results as 
the genetic sire effects (Table II). The estimated variance components were in good agreement with 
the true parameter values used to simulate the data, when the full data was used. When truncated 
time trajectory data was analyzed, uncertainty is seen as larger bias and SD especially for 
parameters related to α . The bias were 25%, 3% and -2% from original values used in simulations 
for parameters α , β  and κ , respectively. Furthermore, relative standard deviation increased only 
from 0.02 to 0.04 for parameters β  and κ , but to 0.15 for parameter α . However, the magnitude 
of increase in relative SD for parameter α  was small i n comparison to increase in bias, so that a 
huge increase in relative MSE for truncated time trajectory data was due to large bias. 

4. Conclusions 
The approximation method that used second-order Taylor series expansion for integrant of non-
linear li kelihood function was found to be useful in estimation of non-linear mixed effects models 
when growth is modelled by Gompertz function. Usually non-linear estimation is found to be 
problematic. Although the presented two-step iterative procedure with each step itself being 
iterative can be regarded as computer intensive, the advantage is easy implementation to the 
existing programs of linear mixed effects model. Only minor changes are needed relating to 
linearization procedure. Furthermore, an advantage is the generality of models accepted for the 
method. 
 
Results from the simulation showed good agreement with the initial values for data, which included 
observations from the whole growing period. Adult weight was not reached and the latter part of the 
function curve had no data, when animals were slaughtered prematurely. Especially this had 
influence for estimation of parameters related to adult weight. Otherwise the results from the 
simulation were fairly good also for truncated time trajectory data.  
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Table I. Relative bias (Rel. Bias), standard deviation (Rel. SD) and mean squared error (Rel. MSE) for (co)variance 
components of genetic sire effects from the simulations for full and truncated data. Subscripts α , β  and κ  denote the three 
parameters in the Gompertz function. 
  Full data  Truncated data 
Parameter True Rel. Bias Rel. SD Rel. MSE  Rel. Bias Rel. SD Rel. MSE 

2
ασ  10.0 -0.002   0.144 0.204  0.186  0.358 1.601 

αβσ  -0.06 0.013 0.485 0.014  -0.612   0.887 0.068 
2
βσ  0.01 0.020  0.130 0.0002  0.001  0.180 0.0003 

ακσ  -3.0e-04 -0.054 0.650 0.0001    0.820  1.643 0.0010 

βκσ  1.0e-05  0.078  0.496 2.48e-06  -0.009   0.740 5.37e-06 
2
κσ  3.0e-07 0.007  0.139 5.67e-09   -0.226   0.370 5.53e-08 

 
 
Table II. Relative bias (Rel. Bias), standard deviation (Rel. SD) and mean squared error (Rel. MSE) for (co)variance 
components of the non-genetic animal effect from the simulations for full and truncated data. Subscripts α , β  and κ  
denote the three parameters in the Gompertz function. 
  Full data  Truncated data 
Parameter True Rel. Bias Rel. SD Rel. MSE  Rel. Bias Rel. SD Rel. MSE 

2
ασ  60.0 0.004  0.021 0.026   0.247 0.153 5.036 

αβσ  -0.36 0.006 0.064 0.001   -0.519 0.281 0.125 
2
βσ  0.06 -0.002 0.018 1.88e-05  0.032 0.035 1.35e-04 

ακσ  -0.003 -0.001 0.049 7.10e-06    -0.089 0.318 3.21e-04 

βκσ  6.0e-05 -0.009 0.092 5.07e-07   0.025 0.200 2.40e-06 
2
κσ  2.8e-06 0.003 0.021 1.24e-09  -0.022 0.045 6.82e-09 

 


