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Abstract

Performances taken into account nowadays in French genetic evaluation of beef cattle consist

mainly of young growth characteristics recorded on farm (weight at birth, at 120 and 210 days).

Selection for better young growth rate generally implies a correlated increase of mature animal

weight. Modelling the entire animal growth will allow the breeders to include selection criteria

on different parts of the growth curve and therefore better manage the animal selection. The

aim of this study is to use a continuous function of age to model the growth process. For

this purpose, a Brody function which has interpretable parameters in terms of growth rate

and mature body weight was chosen. The data used in this study came from an experimental

Charolais herd, created in 1985-1987 out of 300 pure bred Charolais heifers mated with 60

Charolais bulls. 560 females born in an 11 year period were weighed monthly. Heritabilities

and genetic correlations for the Brody parameters were obtained by a Bayesian approach using

Gibbs sampling. Heritability for the adult body weight was found to be equal to 0.64 and for

the maturing rate 0.31. The genetic correlation between these two parameters was estimated at

-0.9 which gives some possibilities to select for animals with high growth rate while keeping a

reasonable adult body weight.

Introduction

Beef cattle industry has been taking a great interest in modelling animal growth for many

years, in order to provide a mathematical summary of weight evolution with age and use

it thereafter to compare or predict animals’ performances.

A classical way nowadays to analyse these data is to use longitudinal models such as

random regression models (Meyer, 2004) or covariance functions (Arango et al., 2004).

However, the main drawback of these models is that they require a quite large number of

parameters with no particular biological meaning. On the other hand, previous studies

(Kaps et al., 1999) showed the great ability of the parametric Brody function to model

growth curves for beef cattle. Moreover, two parameters out of the three constituting this
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growth function can be interpreted as mature body weight and maturing rate, which are

the two main components of interest to beef cattle breeders.

The aim of this paper is to extend the use of this parametric curve to a genetic analysis

by decomposing the three parameters of the curve into a genetic and an environmental

component. A similar approach has already been proposed using a Gompertz function for

growth curves modelling in rabbit (Blasco et al., 2003) and in chicken (Mignon-Grasteau

et al., 2000). This model will be applied to a large beef cattle experimental data set and

genetic parameters will be estimated.

Materials and methods

Presentation of the data

Data used in this study came from an experimental Charolais herd (Mialon et al., 2001),

created in 1985-1987 out of 300 pure bred Charolais heifers mated with 60 Charolais

bulls. In order to have weight measures on a sufficient period of time, only females were

considered. The data used in this study consists of 560 females born in an 11 year period

(1988-1998) and weighed monthly. At this stage, 9 Age Adjusted Weights at specific ages

spread homogeneously between birth and 4,5 years of age (more precisely: 1, 112, 224,

364, 540, 720, 900, 1260, 1620 days) were computed by intrapolation. The dataset also

contains 47 missing weights, especially at the lastest ages.

Presentation of the model

After preliminary exploratory analysis and according to several previous studies (Arango

et al., 2002), the Brody function was chosen to describe the animal weight evolution with

time (Brody, 1945):

yij = ai(1 − bi exp(−ki tj)) + εij (1)

where yij represents the body weight measure for animal i at age j, parameters ai and ki

can be interpreted as the adult body weight for animal i and its maturing rate, respectively.

The residuals εij are assumed to be independent, normally distributed with mean zero

and variance σ2
j . According to preliminary analyses, the residual variance was found to

be changing with time. To take into account these changes, the evolution of the standard

error σj is also modelled by a Brody function:

σj = aε(1 − bε exp(−kε tj)) (2)

Each parameter a, b and k are decomposed into a genetic and an environmental

component using a standard polygenic model. More generally, let p = (a′, b′, k′)′. Vector
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p can be decomposed as:

p = Xβ + Zu+ e (3)

It is expected in practice that the three coefficients a, b, and k will be correlated. It is

indeed known that the adult body weight and the growth rate are correlated. The genetic

effects u are assumed to be normally distributed as: u ∼ N (0, G⊗ A), where A is the

relationship matrix between individuals, G is of dimension 3 × 3 and corresponds to the

genetic covariance matrix between parameters a, b, and k. The residuals e = (ea
′, eb

′, ek
′)′

are also assumed normally distributed as: e ∼ N (0, R⊗ IN), where R is a 3 × 3 matrix

that corresponds to the environmental covariance matrix between parameters a, b, and

k, and IN is the (N × N) identity matrix.

Bayesian parameter estimations

This model corresponds to a nonlinear mixed effects model, and classical estimation pro-

cedures do not apply. Inference on the parameters has therefore been based on a Gibbs

sampling algorithm, as presented by Varona et al. (1997) and Blasco et al. (2003). Pri-

ors were chosen to be non-informative for all the parameters. The conditional posterior

distributions were normal for parameters a, b, β, and u, but non standard for parameters

k and pε = (aε, bε, kε)
′. A Metropolis-Hastings algorithm was used to sample values from

these latter parameter distributions.

Convergence was assessed by overlapping two chains started from different starting

values and also by means of the test of Gelman and Rubin (1992). Due to the strong

correlations between the different parameters, slow convergence was observed. The Gibbs

sampler was run for 300000 iterations with a burn-in period of 100000.

Genetic parameters estimation

Heritability for each of the Brody curve parameters is computed, using the following

definition: h2 = σ2
u/(σ2

u + σ2
e), where σ2

u is the additive genetic variance and σ2
e is the

residual variance for parameters a, b or k. These heritability values are, however, expected

to be slightly overestimated as they do not take into account the global residual variances.

In order to overcome this drawback a first order Taylor expansion was used and provided

corrected heritability estimates for weight at all ages.
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Results

Model fitting

The estimated phenotypic values for the average Brody curve were for the three parame-

ters a, b and k: 756, 0.94 and 0.000016, respectively. Figure 1 shows this average Brody

curve plotted versus a non-parametric curve, obtained by averaging all weights at each

age. The Brody function seems to fit the data very well. The Vonesh concordance coef-

ficient (Vonesh et al., 1996; Jaffrezic et al., 2004) was used to provide a goodness-of-fit

value at each age. It has values between -1 and 1 with a perfect fit at 1. This coefficient

was found to range between 0.7 and 1, which confirms the adequacy of the Brody function

to individual phenotypic curves.

Figure 1: Average phenotypic growth curve
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Genetic parameters estimation

Table 1 presents the different parameter estimates: heritability and correlations between

the growth curve parameters. Heritability for the adult body weight was found to be quite

high, equal to 0.76, whereas heritability for the maturing rate was much lower, equal to

0.31. However, as mentioned in the methodology section, these values are expected to

be slightly overestimated. Heritability estimates obtained at the different ages using a

first order Taylor expansion are given in Figure 2. The general form of the curve is in
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agreement with the results of Koots et al. (1994), with a decrease at early ages followed

by an increase when animals get older. Heritability for the mature weight was found equal

to 0.64. Several studies have already estimated the heritability of the adult body weight.

The heritability values for mature weight range between 0.4 and 0.61 (Kaps et al.,1999).

It is, however, more difficult to find references for the calculation of the heritability for

the maturing rate, although it is a character of great interest to breeders.

A very interesting feature of the proposed model compared to the classical longitudinal

approaches, comes from the fact that it directly provides for each animal in the pedigree

a genetic value for the adult body weight as well as for the maturing rate. As shown

in Table 1, the genetic correlation between these two traits was found to be equal to

-0.9. This will allow the breeders to make an informed selection and to obtain a balance

between these two characters. In fact, the aim would be to obtain animals with fast early

growth rate without a too dramatic increase of the adult body weight.

Table 1. Estimates of the heritability and genetic correlations for parameters a, b and k

of the Brody curve.

Variable Mean Median Standard Deviation 25% quantile 75% quantile

h2a 0.76 0.77 0.09 0.70 0.83

h2b 0.39 0.39 0.09 0.33 0.45

h2k 0.31 0.31 0.10 0.23 0.38

rg (ab) 0.42 0.43 0.13 0.34 0.51

rg (ak) -0.89 -0.90 0.08 -0.96 -0.85

rg (bk) -0.44 -0.45 0.16 -0.56 -0.33

Prediction ability of the model

In order to evaluate the ability of the model to predict adult body weight, the weights

at 1620 days were deleted for 50% of the animals (randomly chosen) and predicted using

the proposed Brody model, but also with a quartic random regression (RR) and a third

order structured antedependence model (SAD) (Jaffrezic et al., 2004). The concordance

coefficients between the predicted values and the observed 1620 days weight were equal

to 0.64, 0.87, 0.88, for the Brody, RR and SAD models respectively. RR and SAD models

therefore seem to be better able to extrapolate the growth curve. Looking at specific

animal growth patterns, the parametric Brody growth curve was found, however, to be

less influenced by temporary weight variation, such as during the calving time for example,
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Figure3: Individual phenotypic predictions
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