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This study investigated the use of linear splines as alternatives to polynomials in random 

regression models. With linear splines, parameters for all effects except permanent environment 
and residual can be the same as in multiple trait models, simplifying validation and computations. 
Also, artifacts at boundaries are less likely. One comparison involved simulated data in beef 
cattle involving weights at days 1, 205±45 and 365±50. Models included were multiple trait, 
random regression with cubic Legendre polynomials, and random regression with linear splines 
and 3 knots. Variance components in the three models were equivalent at days 1, 205 and 365. 
The multiple trait model was the least accurate because it did not account for variability in days 
for random effects. Both random regression models gave nearly identical results, but the model 
with splines was simpler and converged much faster. In another comparison involving field data 
on beef cattle, variance components for a similar model were estimated by a multiple trait and by 
a random regression model with linear splines. Large percentage of records for birth and 
weaning weights were missing. The model with splines gave more realistic estimates of 
heritabilities and correlations. Random regression models with linear splines are simpler and 
safer alternatives than models with polynomials. 

 
Introduction 

Many analyses by random regression analyses use Legendre polynomials. These 
polynomials are able to model a variety of curves for variances and covariances, and they have 
better numerical properties than regular polynomials. However, they also have many undesirable 
properties. Fit at the extremes of the trajectory may be poor. Curves at points of the trajectory 
with few records may contain artifacts. When parameters are estimated with these polynomials 
conversions are necessary to find out whether they are realistic or not. Finally, there is problem 
with numerical stability because, even though the polynomials are orthogonal on a uniform scale, 
they are far from orthogonal with real-data distributions. Stability may be improved by 
reparameterization to diagonal variances, however, this increase the complexity. Rank reduction 
(i.e., elimination of dimensions with very small eigenvalues) that is usually performed with the 
diagonalization may result in large changes for some points on the trajectory; especially there are 
large changes in variances along the trajectory. Successful estimation of variances with Legendre 
polynomials requires large data sets, even distribution of data points on the trajectory and careful 
modeling of other effects (Druet et al., 2003).  

Several alternatives exist to Legendre polynomials. White et al. (1999) used cubic 
polynomials and Torres and Quaas (2001) used B-splines with 10 knots. One coefficient of 
splines affects only parts of the trajectory resulting in possibly better numerical properties and 
fewer estimation artifacts.   Foulley and Robert-Granié (2002) advocated the use of fractional 
polynomials where also roots and logs are implemented. Subsequently, the properties at the 
extremes can be improved and some artifacts eliminated. However, both approaches still result in 
cryptic parameters. 

 Recently, several studies at the University of Georgia look at the application of 
linear splines. When knots are at points corresponding to a multiple trait model (MTM), the 
(co)variances of splines and multiple trait models are the same for all effects other than 
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permanent environment and the residuals. This greatly simplifies preparation of parameter files as 
in many cases the literature and common-sense information may be sufficient.  

 The purpose of this paper is to present properties and then report applications of 
the linear splines in random regression models (RRMS).  

Materials and Methods 
Random Regression Models (RRMs) 
A random regression model for growth in beef can be defined as: 
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where yijkt is tth observation of animal j of dam k, CGmi mth fixed regression coefficient of 
contemporary group i; djl and pjl are lth random regression coefficients of direct genetic and 
permanent environmental effects of animal j; mkl and mpkl are lth random regression coefficients 
of maternal genetic and permanent environmental effects of dam k; and eijkt is the random 
measurement error; Φ(at) represents a vector of covariables at age at. For linear splines, a vector 
of spline coefficients (Φ) at age t (at) for knots q1, q2 and q3 can be defined as: 
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The choice of linear splines was due to two factors. First, each spline coefficient has 
localized effects (Green and Silverman, 1994; Wold, 1974) and thus would result in fewer 
artifacts than polynomials. Second, parameters for models with linear splines are very easy to 
derive from parameters of MTM. This can be illustrated by listing the RRMS for the direct effect 
only: 

1 1 2 2 3 3... ( ) ( ) ( ) ...ijk t j t j t j ty d a d a d a= + Φ + Φ + Φ +  
The spline coefficients and the model for specific weights corresponding to standard weights in 
MTM are: 
 Birth weight:                          1 2 3 1(1) 1; (1) 0; (1) 0; ... .. .ijk t jy dΦ = Φ = Φ = = + +

 Weaning weight:       1 2 3(2 0 5 ) 0; (2 0 5 ) 1; (2 0 5 ) 0; ... . ..ijk t jy dΦ = Φ = Φ = = + +2

3 Yearling weight:      1 2 3(3 6 5 ) 0; (3 6 5 ) 0; (3 6 5 ) 1; ... . . .ijk t jy dΦ = Φ = Φ = = + +

Thus, the direct effects in RRMS for standard weights are the same as in MTM, and subsequently 
the variances are identical. Generalizing, when the knots in RRMS correspond to traits in MTM, 
the variances in the corresponding effects except the residual are the same. However, the residual 
effect in MTM is split into the permanent environment plus the residual effect.  

Data 
Three data sets were used for comparisons. The first data set was simulated using 

covariances matrices as constructed by Legarra et al. (2004) and transformed to RRM with cubic 
Legendre polynomials. The simulation involved a total of 29,400 animals in three generations. 
Four data sets were simulated. The first data set (3EXACT) consisted of three records per animal 
at exactly 1, 205 and 365 days of age. With this data set, properly designed RRM should be in 
perfect agreement with MTM. The second data set (3SPREAD) contained three records per 
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animal. These records were located in 45 days interval around 1d, 205d and 365 days of age. The 
distribution of the spread in this and later cases was uniform. With the second data set, RRM 
would be expected to maintain accuracy because it accounts for changes in variances while 
accuracy of MTM would be expected to be lower. The third (5EXACT) data set was formed by 
adding records at 100 and 300 days of age to the first data set. The fourth data set (5SPREAD) 
was created by including two extra records in 45 days interval around 100 days and 25 days 
interval around 300 days of age to the second data set. With extra records, RRM was expected to 
be more accurate than MTM, and that accuracy should be similar for the both data sets.  
Comparisons involved 3 models: RRM with cubic Legendre polynomials (RRML), RRMS and 
MTM (for 3 traits only). The first data set was used to compare accuracies obtained with all the 
models for all the data sets, and to compare computing costs. Computing costs for RRMs 
included the original model and models after diagonalization. 

The second data set contained about 540,000 Gelbvieh animals, of which 90% had 
weaning weights, 80% had birth weights and 30% had yearling weights. Comparisons involved 
the same models as above and were used to obtained correlations among EPDs obtained from 
those models as well as computing times. 

The third data contained a subset of the data above, with weight records on 18,900 
Gelbviehs, of which 100, 75 and 17% had birth (BWT), weaning (WWT) and yearling (YWT) 
weights, respectively. This data set was used for comparing estimates of parameters obtained with 
RRMS and MTM. 

  

Results and Discussion 
Table 1 presents accuracies computed as correlation between the true (simulated) and 

predicted breeding values. The accuracies for all the three methods using 3EXACT were the same. 
The accuracies with 3SPREAD were essentially the same for RRML and RRMS but lower for 
MTM, as expected. With 5EXACT and 5SPREAD, the accuracies of RRML and RRMS 
increased, also as expected. However, the increase in RRMS was slightly smaller than in RRML 
indicating differences between these methods.  

 

Table 1: Accuracies (%) of breeding values in multiple trait model (MTM), random 
regression model with Legendre polynomials (RRML) and random regression model with 
splines (RRMS), and four datasets 

 3EXACT 3SPREAD 5EXACT 5SPREAD 
Age MTM RRML RRMS MTM RRML RRMS RRML RRMS RRML RRMS

1 56.6 56.6 56.6 55.1 56.6 56.6 56.9 56.9 57.0 56.9 
205 53.5 53.5 53.5 52.0 53.5 53.5 55.9 55.8 56.0 55.9 
365 52.8 52.8 52.8 51.4 52.8 52.8 53.9 53.7 54.0 53.8 

 
(Co)variances of RRML and RRMS are equivalent at standard days but are different at 

other days. Figure 1 shows the direct variance as the function of age for MTM, RRML and 
RRMS. The variance for RRMS is concave in between the knots; the concavity increases with 
decrease of genetic correlation between the adjacent knots. Figure 2 shows genetic correlations 
for the direct effect between birth weight and other days. The correlations with RRMS are 
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inflated especially around 100 days of age. The inflated correlation resulted in too large 
contribution of records especially around 100 d to prediction of birth weight.  

 
Figure 1. Direct genetic variance of random regression models with Legendre polynomials 
(RRML), splines with knots located at 1, 205 and 365 d (RRMS 3 knots), splines with knots 
located at 1, 100, 205 and 365 d (RRMS 4 knots), and multitrait model (MTM) 
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Figure 2. Direct genetic correlations between weight at birth and other ages in RRML and 
RRMS with 3 and 4 knots and MTM  
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Figures 1 and 2 also contain graphs of RRMS obtained when an extra knot was added at 

100 d. In this case, the variances of RRML and RRMS are very similar. It is worth noting that 

 4  



55th Annual EAAP Meeting-Bled (Slovenia), September 5-8, 2004 

despite the differences in variances, the accuracies of RRML and RRMS were very similar and 
higher than those with MTM. This agrees with the opinion of C. R. Henderson indicating that 
mixed model equations are robust with respect to slightly inaccurate parameters. A selection of 
number and location of knots will be a topic of a separate study. 

The rank of RRM was reduced by dropping random regression coefficients with 
eigenvalues that explained less then 1 % of variance. Although the computation costs were 
reduced, this affected accuracy. Correlations between the rank reduced and non-reduced RRML 
predictions were 0.89, 0.91 and 0.95 for the direct genetic effect and 0.80, 0.98 and 0.97 for the 
maternal genetic effect at 1, 205 and 365 days of age, respectively. This was because even though 
the eigenvalue corresponding to the eliminated direct genetic variance component accounted for 
only 0.102 % of the total variance, it explained a large portion of the variance at birth (Figure 3). 
The elimination of this eigenvalue resulted in decrease of direct genetic variance at birth by 5.13 
(65.2 %). The change in variance due to the rank reduction was close to zero after 150 days of 
age. Similarly, reduction of the maternal effect caused decrease of variance at early ages and 
almost no change at late ages. Foulley and Robert-Granié (2002) mentioned that the rank of RRM 
should be reduced with caution.  

 
Figure 3: Differences in direct and maternal genetic variance between original and rank 
reduced RRML 
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Table 2 shows the number of rounds and computing time for the original, diagonalized 

and reduced models. Solution method was preconditioned conjugate gradient with a diagonal 
preconditioner. After diagonalization, the number of rounds required to converge decreased from 
571 to 101 in RRML, and from 184 to 81 in RRMS. The RRMs with splines were the fastest due 
not only to showing higher convergence but also to having only three covariables per effect rather 
than four in RRML. 
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Table 2: Computing cost of models with the 3EXACT data seta

 MTM RRML RRMS 
 Rounds Time Rounds Time Rounds Time 

Original 288 2m31s 571 20m40s 184 3m40s 
Diagonalization   101 4m4s 81 1m47s 
a 2.8 GHz processor 

 
Table 3 presents the number of round till convergence obtained with the national Gelbvieh data 
set.  The model with Legendre polynomials did not converge until the diagonalization was 
implemented.  

 

Table 3: Number of rounds until convergence with the field data seta

 MTM RRML RRMS 
Original 678  > 2000 254 

Diagonalization -  274 - 
a 2.8 GHz processor 
 

Table 4 present estimates of variance components for a subset of the Gelbvieh data set 
obtained with MTM and RRMS. It is clear that the estimates of RRMS are at the same scale as 
MTM, and that both sets are similar. The estimates of genetic correlations between the direct 
and maternal effects seem inflated in MTM but are lower in RRMS. This could be due to ability 
of RRMS to account for changes in variances for records with a spread while the preadjustment 
in MTM is just for the fixed effects 

 
 

Conclusions 
Random regression model using linear splines offers several advantages over models 

using other functions. First, its parameters are on the scale of multiple trait models and thus are 
easy to create and to evaluate. Second, this model is numerically more stable than RRML. One 
issue is determining the number of knots. One rule is to have such knots so that the correlations 
among adjacent point are high but not too high, e.g., 0.5 to 0.8. Too low correlations diminish the 
modeling capacity, and too high correlations result in too many knots and subsequently more 
numerical problems. However, small imperfections in modeling variances with RRMS seem to 
reduce its accuracy very little. 
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Table 4. Estimates and their posterior standard deviations of (co)variance components for 
direct additive genetic, maternal additive genetic, maternal permanent environmental and 
residual effects using multi-trait model and random regression model with a linear spline 
function 

 

a BWT: birth weight, WWT: weaning weight, YWT: yearling weight. 
b Estimates for random regression model are sums of estimated direct permanent 

environmental and residual variances. 

Multi-trait model Random regression model Traita 
BWT WWT YWT BWT WWT YWT 

Direct additive genetic variance 
BWT 8.1±1.0   8.1±8    
WWT 18.1±4.0 195.4±37.6  20.8±4.0 225.5±29.5  
YWT 40.5±5.9 155.4±60.7 754.9±17.0 41.4±8.9 260.0±42.3 855.1±178.8 

Maternal additive genetic variance 
BWT 1.0±0.3    1.2±0.4   
WWT -2.4±1.4 76.3±17.8  -3.5±1.6 79.7±18.6  
YWT -6.6±2.8 -22.4±23.3 148.4±48.6 -2.3±3.5  5.7±17.7 185.1±84.7 

Maternal permanent environmental variance 
BWT 1.4±0.3   1.4±0.2   
WWT 5.3±1.6 96.4±14.0  6.4±1.1 78.2±13.8  
YWT 8.1±3.3 57.9±22.7 111.5±48.1 6.2±2.7 76.6±18.8 146.7±35.6 

Residual varianceb 
BWT 7.7±0.6   7.7±0.5   
WWT 10.8±2.5 407.4±22.3  9.4±2.4 362.9±18.6  
YWT 10.0±4.0 343.1±38.1 859.7±81.2 9.2±5.8 283.3±29.3 726.2±107.7 
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