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Abstract: 
 
In horse populations there is a great concern for pedigree. Genetic markers are commonly used for 
exclusion procedures to assess the right sire and dam of the foal. However pedigree information is 
limited because the total genetic history of an animal or a population can not be traced from the 
beginning. In this paper we try to review how genetic markers can help us to overcome these 
difficulties. Formulae in the literature for estimating F from the state of markers consider the two 
causes that make sorting two genes alike. They are either identical by descent or alike in state. All 
authors agree that estimators for pairwise relatedness or individual inbreeding coefficients need a 
lot of independent co-dominant marker loci where alleles are balanced in frequencies in order to 
reach a minimum accuracy in estimations. In this perspective the development of a kit of SNP 
satisfying these conditions would be a tool of great interest to address the problems connected with 
parentage inbreeding and genetic diversity in horse populations where the good management of 
pedigree information appears insufficient to do it properly. 
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Introduction 
 
In horse populations there is a great concern for pedigree. Most of stud-books started during the 19th 
century and some of them even earlier. This administrative work was done very carefully as it was 
done for humans with parish register. However this did not exclude some errors which justified the 
use of genetic markers in routine procedure as early as the 1970s. Now genetic markers are 
systematically used for breeds such as arab, thoroughbred and trotter and commonly used for the 
others in the case of artificial insemination or at random to discourage fraud. The result is a very 
low percentage of parentage errors in horse breeding. Genetic markers in horse breeding are only 
used for exclusion procedures to assess the right sire and dam of the foal. Categorical allocation to 
select the most likely parent from a foal of non-excluded parents is not practised for legal reasons. 
However pedigree information is limited because the total genetic history of an animal or a 
population can not be traced from the beginning. Even with very complete and reliable pedigrees, 
there are still events in the past which are not described like bottlenecks or real number of unrelated 
founders. In this paper we try to review how genetic markers can help us to overcome these 
difficulties. 
 
Exclusion 
 
The earliest conceptually simplest technique of parentage analysis is exclusion. This technique 
based on Mendelian rules of inheritance uses incompatibilities between parents and offspring to 
reject particular parent-offspring hypotheses. It was used a low scale for a long time in horse 
breeding: two chestnut (ee) parents are expected to have only chestnut foals (ee). One grey foal (G-) 
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is expected to have at least one grey parent (G-)- which can be generalised for each recessive allele 
(black E-/aa) or dominant one (bai E-/A-). 
 
More generally a foal can not receive an allele not present in his parents. One sees immediately that 
co-dominant loci where genotype of foal and parents will appear will be more efficient that 
dominant/recessive ones for that technique. 
 
Exclusion is an appealing approach because exclusions of all but one parent pair from a complete 
sample of all possible parents for each offspring in a population could be considered the paragon of 
parentage analysis. However it is limited by the occurrence of typing errors and at a lower rate of 
mutations. The list of markers used for exclusion also plays a major role.Jamieson and Taylor 
(1997), Dodds et al.(1996) made a thorough analysis of these questions. It is concluded that the 
exclusion probability increases with the number of loci that can be used as genetic markers, with the 
number of alleles at each locus and with the evenness of the allele frequency at each locus 
(Chakraborty et al.1974, Selvin (1980),Ryman and Chakraborty (1982), Smouse and Chakraborty 
(1986). However the relationship exhibits a diminishing marginal return because an additional 
marker applies its power of exclusion only on non-excluded parents before its application. 
 
This can be generalised to other types of exclusion. For an autosomal marker first, it is always 
easier to detect incorrect offspring assignments (i.e. when mating pairs are known) than other types 
of exclusion and second, paternity (or maternity) exclusion is greater with the other parent known 
than unknown as expected. 
 
For daughters the X- linked markers always has a greater exclusions probability no matter what 
situation is being tested except for maternity testing without knowledge of the sire where the 
autosomal and X- linked markers have the same exclusion probability). For sons the autosomal 
marker has higher exclusion probability except for maternity testing in which case, the X linked 
marker would be better. 
 
The importance of exclusion probability to paternity assignment is that an increase in the exclusion 
probability increases the probability of paternity among the set of non-excluded parents. Clearly the 
likelihood of choosing the correct non-excluded parent increase. In the extreme case, as the 
exclusion probability approaches 1, most progeny can be assigned exclusively to a single male or 
female parent in the population. 
 
It may also be desirable to require exclusion at more than one locus to reduce the effect of possible 
genotyping errors, mutation or of unknown null alleles. 
 
Table 1 shows the exclusion probability of eleven microsatellites markers routinely used for 
parentage control in horse breeding in France. The exclusion probability for thoroughbred and Arab 
breeds is now reaching near one value (Amigues et al. 2000). With older systems (9, haemolytic, 24 
aglutination and 10 electrophoretic) it was only of 0.952 for thoroughbred and 0.954 for arab. These 
now very high exclusion probabilities were recently confirmed by Cho and Cho (2004) for Korean 
native horses. 
 
 
As it can be inferred from the studies in horses 10 to 20 polymorphic loci allow probabilities of 
exclusion close to 1. The paragon of parentage analysis is therefore reached for horse populations. 
For each foal the right sire and dam can be assigned. 
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Table 1 – Exclusion probabilities in two breeds for routine microsatellites markers used in France. 
                                                       (source: Amigues et al. 2000) 
 
 

 

Microsatellites Thoroughbred Arab 
Name Origin Reference Alleles 

number 
Exclusion 
Probability 

Alleles 
number 

Exclusion 
probability 

AHT4 U.K. Binns et al. 1995 6 0.49 7 0.57 

AHT5 U.K. Binns et al. 1995 6 0.51 6 0.45 

ASB2 Australia Breen et al. 1997 8 0.68 8 0.37 

HMS1 France Guérin et al. 1994 4 0.35 6 0.36 

HMS3 France Guérin et al. 1994 6 0.35 6 0.46 

HMS6 France Guérin et al. 1994 7 0.32 6 0.46 

HMS7 France Guérin et al. 1994 5 0.58 7 0.53 

HTG4 Sweden Ellegren et al. 1992 5 0.25 6 0.41 

HTG6 Sweden Ellegren et al. 1992 7 0.33 7 0.37 

HTG10 Sweden Marklund et al. 1994 7 0.54 8 0.53 

VHL20 The Netherlands Van Haeringen et al. 1994 7 0.50 10 0.62 

 68 0.9989 77 0.9991 
 

Total 
Probability of identity 4.6 10-10 1.8 10-10 

 
Allocation or assignment 
 
If complete exclusion is not possible it is often not sufficient to derive accurate population statistics 
on mating patterns. Consequently techniques were developed that assigned progeny to non-
excluded parents based on likelihood scores derived from their genotypes. According to Jones and 
Ardren (2003) these techniques assign offspring either categorically or fractionally. 
 
Categorical allocation uses likelihood-based approaches (Meagher and Thompson, 1987) to select 
the most likely parent from a pool of non-excluded parents. This method involves calculating the 
logarithm of the likelihood ratio (LOD score) by dividing the likelihood of an individual (or pair of 
individuals being the parent (or parents) of a given offspring by the likelihood of these individuals 
being unrelated. After an exhaustive evaluation of all possible parents, the offspring are assigned to 
the parent (or parental pair) with the highest LOD score. When all-parent offspring relationships 
show zero likelihood, offspring are unassigned. Parentage remains also ambiguous when multiple 
parent-offspring relationships obtain high no zero likelihood. Contrary to strict exclusion methods, 
likelihood-based allocation method, because it is based on the evaluation of a probability, allows for 
some degree of transmission errors due to misreading or mutation (SanCristobal and Chevalet 
1997). 
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It is also for this reason that allocation techniques are not acepted in horse breeding. For forensic 
purpose you need to establish true facts and not only their probabilities. However limiting yourself 
to true facts limits the amount of information used. Allocations techniques remain therefore 
appealing because they allow a better use of the available information in statistical terms. 
 
Returning to Meagher’s and Thompson’s (1987) original proposition for categorical allocation. In 
all cases we examine genotypes , g   and  at a single autosomal locus for three individuals 
(O, B and A). Assuming unlinked loci, information from multiple loci can be combined by 
summing the LOD scores over all loci. Transition probabilities (T) for use of the following 
equations can be found in Marshall et al. (1998)for co-dominant markers and in Gerber et al. (2000) 
for dominant markers. Three main cases have to be examined: 

A Bg Og

 
a) Identifying one parent when the other is known. Letting B represent the known parent and A the 
alleged parent, the LOD score for A being the parent of O is: 
 

LOD score (A parent of O) = O B A
e

O B

T(g g ,g )Log
T(g g )

|
|

 

 
Where  is the transition probability of g  given g  and  and  is the 
transition probability of  given g . 

O B AT(g g ,g )| O B Ag O BT(g g )|

Og B
 
b) Identifying one parent with no information about the other parent. In this case, no information is 
available concerning parentage of O. The single parent LOD score for B being the parent of O is: 
 

LOD score (B parent of O) = O B
e

O

T(g g )g
P(g )

|Lo  

Where  is the frequency of the offspring’s genotype in the population. OP(g )
 
c) Identifying a parental pair starting with no prior information. Parental pair allocation is an 
approach for identifying parent-offspring relationships by constructing genotypic triplets consisting 
of a proposed offspring and proposed maternal and paternal parents. This procedure involves 
calculating a breeding likelihood, which is defined as the likelihood of a parental pair producing the 
multi locus genotype found in the offspring being examined. The breeding likelihood of a given 
offspring on the basis of a single locus is: 
 

LOD score (A, B parent of O) = O A B
e

O

T(g g ,g )Log
P(g )

|  

 
The fractional allocation method assigns some function, between 0 and 1, for each offspring to all 
non-excluded candidate parents. The proportion of an offspring allocated to a particular candidate 
parent is proportional to its likelihood of parenting the offspring compared to all other non-excluded 
candidate parents. Single parent and parent pair likelihoods are calculated in the same way as in the 
categorical allocation method (Devlin et al. 1988). Because the fractional technique splits an 
offspring among all compatible males it is guaranteed to be incorrect from a biological standpoint, 
an offspring having only one father and one mother. However for the study of particular problems 
connected with reproductive success in natural populations this method proved his statistical 
superiority. Indeed, the categorical allocation by the most likely method as formulated above 
embodies some bias in that the most likely parent will always be that individual in the population 
that has the highest number of loci homozygous for the necessary paternal gamete contribution that 
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complements the maternal ones. It was also emphasised by Thompson and Meagher (1987) that 
bilateral relatives such as full sibs may be more likely parents than the true parent individuals. 
 
We will also see further that maximum likelihood techniques are asymptotically optimal but can 
prove to be very inaccurate for a low number of markers. 
 
First conclusion on exclusion and allocation 
 
For horse breeding we are now in a situation where the exclusion probability of the microsatellites 
markers routinely in use is close to one for all breeds. Therefore the allocation techniques decrease 
in interest at least to identify the first generation parents (Sire and Dam) to certify the pedigree. To 
ascertain sire and dam of an offspring when done, over several generations, makes the information 
of pedigree very reliable. 
 
However this is not sufficient to ascertain exact genetic relationships between individuals of a 
population when some errors in the past (Kavar et al. 2002) and when the assumption of unrelated 
founders (ancestors without known parents) can not be accepted as it is mainly the case in horse 
populations (Mahon and Cunningham 1982, MacCluer et al. 1983, Cothran et al. 1984, Moureaux et 
al. 1996, Cunningham et al. 2001, Zechner et al. 2002.). 
 
We can also remark that a sire or a dam transmit half of his alleles to his offspring with certainty, 
this is only the case in probability for other relationships as shown Table 2. One can want to check 
the realisation of this probability with genetic markers particularly when panmixia is not realised in 
the case of inbreeding selection and homogamy. 
 

Table 2 – Cotterham’s K values for some standard genealogical relationships, in the absence of 
inbreeding. 

Source: Thompson (1975) 
 
Relationship of A to B 0K  1K  2K  

Unrelated 1 0 0 

Offspring, parent 0 1 0 

Sib 1/4 1/2 1/4 

Identical twin 0 0 1 

Niece, nephew, uncle, aunt
Grandparent, grand-child
Half-sib






 

 
 

1/2 

 
 

1/2 

 
 
0 

First-cousin 
Parent’s half-sib, half-sib’s child 

 
3/4 

 
1/4 

 
0 

Double first cousin 9/16 6/16 1/16 

Half-sibs whose non-identical parents are:    

1- sibs or parent-offspring 3/8 1/2 1/8 

2- half-sibs 7/16 1/2 1/16 

0K , ,  being the probability of 0, 1 and 2 genes in common 1K 2K
Other relationships have K  and K 1  1 1/≤ 2 62 /1≤
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Short history of the description of genetic pairwise relationships. 
 
Cotterman 1940 first introduced the k coefficients probability that two non-inbred individuals have 
0, 1 or 2 genes in common. These are sufficient specification of the relationship between any two 
non-inbred individual. Malécot 1948 extended this work introducing the parentage coefficient 
between two individuals. This is the probability of drawing two genes identical by descent in each 
individual. Consequently the inbreeding coefficient of an individual, the probability that the two 
genes of a same locus are identical by descent is the parentage coefficient of his parents. This 
allowed a more thorough use of pedigree information. Wright (1943) defined the kinship coefficient 
r, as the correlation between uniting gametes. That is two times Malécot’s parentage coefficient The 
last step of description of pairwise relationships was given by Jacquard (1972) for two individuals 
at one locus nine situations of identity were distinguished according to Figure 1. 
 
 
Figure 1 – Scheme of the nine situations of identity according to Jacquard 1972 
 
N° 1 3 5 7 9 

Individual A  
 

Individual B  

••
    
    
••

 
••
       
       
•             •

 
•             •
       
       
••

 
•             •
       
       
•             •

 
•             •
    
    

•             •

 

 
 
N° 2 4 6 8 

Individual A  
 

Individual B  

••
    
    

••

 

••
    
    

•             •

 

•             •
    
    

••

 

•             •
        
        
•             •

 

 
 
 
According to these nine situations a probability ∆  is given according to the pedigree and we have 
the following relations with inbreeding coefficient f and the parentage coefficient ϕ . 

i

 
A 1 2 3 4

B 1 2 5 6

AB 1 3 5 7 8

f
f

1 1( )
2 4

= ∆ + ∆ + ∆ + ∆

= ∆ + ∆ + ∆ + ∆

ϕ = ∆ + ∆ + ∆ + ∆ + ∆

 

The correspondence with Cotterman’s coefficients is: 
0k  in situations 2 4 6 and 9 (0 gene in common for A and B) 

1k  in situations 8 3 5 (1 gene in common) 

2k  in situations 1 and 7 (2 genes in common) 
 
How to infer the estimation of f or ϕ .from the situation of genetic markers identity. 
 
We must go back to Malécot (1948) to define the two concepts that makes two alleles at the same 
locus alike. They are either “identical by descent” (IBD) or “alike in state” (AIS). He wrote 
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therefore the probability s  of being homozygote for allele  i equals the probability of being IBD 
defined as the inbreeding coefficient multiplied by the probability of drawing the i allele, plus the 
probability (1-f) of not being IBD multiplied by the probability of drawing at random twice the 
same allele (probability of being AIS): 

ii

 
 = 2

ii i is fp (1 f )p= + − 2
i ifp (1 p ) p+ − + i

i





)

 

 
The probability sij of being heterozygote for alleles i and j equals the probability of not being IBD 
multiplied by the probability of drawing at random i and j or j and i. 
 
            Sij = (1-f)2pipj 
 
Where  is the frequency of allele i. The probability of being homozygous at the locus is derived: ip
 
  (1) 2

ii i
i i

s f (1 f ) p∑ = + − ∑

or   2 2
ii i i

i i
s f (1 p ) p∑ = − ∑ + ∑

 
And the probability of being heterozygous: 
 

  

( )

ij ii
i j i

2 2
i i

i i

2
ii i

i i

s 1 s

1 p f (1 p )

1 s 1 f 1 p

≠
∑ = − ∑

= − ∑ − − ∑

  − ∑ = − − ∑  
  

 
From the knowledge of p  and the observed s  or s  f can be estimated.  i ii ij
This formula is presented many times in the literature under different forms considering f or 
parentage coefficients  of the parents, multi- or bi-allelism. Let us cite Wright (1978)analogous 
formulae for subdivided population discussed by Malécot (1969): 

ϕ

 
( ) ( )(IT IS ST1 F 1 F 1 F− = − −  
 
where according to Eding (2002) or Robertson and Hill (1984)  is defined as the total kinship 
between two individuals within the whole subdivided population.  is the kinship between two 
individuals within a subpopulation and can be extracted from the (limited) pedigree information, 

.  is the correlation between random gametes from the same sub population relative to 
the whole population:     

ITF
FIS

ISF f= STF

ST s tF 1 H / H= −

Hs is the heterozygosity intra subpopulation 
Ht is the heterozygosity for the whole population 
. 
Let us also cite Lynch (1988) formula: 
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2
ii i

ii
2
i

i

s p
f

1 p

∑ − ∑
=

− ∑
 

 
(see equation (1) probability of being homozygous) 
 
All techniques of estimating pairwise relationships from the state of molecular markers derive from 
this approach. They can be applied at the individual level or at the intra- and between- population 
levels. However, one can immediately anticipate how low will be the accuracy of the one locus 
approach. We are therefore inclined to propose a multi-locus approach. 
 
Multi-locus approach 
 
For the choice of an adequate and efficient set of markers the weighting of information of each 
locus plays a major role for determining best statistical estimators (Ritland 1996) and also for the 
choice of efficient and adequate markers. Indeed, one can easily understand that fixed loci will not 
give any information on parentage and that at the opposite loci with more balanced frequencies will 
do it. 
 
From a statistical standpoint (Ritland 1996) one problem in estimating relatedness or inbreeding for 
individual is statistical bias caused by small samples. In considering sample size, there are two 
dimensions the number of individuals, and the number of marker loci. The number of individuals if 
considered alone is at a bare minimum of one for inbreeding, two for relatedness, magnifying the 
bias due to small samples, even when a large number of marker loci are used. This can be a 
significant problem when using maximum likelihood estimators which are often recognized to show 
bias with small sample sizes. However individuals or mating pairs are not isolated they belong to a 
population or a sub-population. Indeed, the parentage coefficient of two individuals and therefore 
the inbreeding of an individual have no meaning per se. The concept takes sense only when it is 
related to a population or a subpopulation constituting the gene pool. This question about the 
number of individuals can therefore be partly translated on the problem of estimating allele 
frequencies in these populations. It will give the basis for the genotypic probabilities of randomly 
chosen animals. Deviations from this basis will serve for parentage analysis. Without reference 
there is no measurement possible. 
 
 
 
Method of Moment Estimator (MME) 
 
 
 
Generality 
 
Its primary advantage is the reduction of bias with individual level estimates and a lack of 
distributional assumptions. 
 
To describe the data we denote S  as the observed proportion of pairs similar for marker allele i. It 
can be regarded as an indicator variable of relationship. For the case of inbreeding coefficient f, 
then S  if the two alleles at a locus are allele i ; otherwise . For the case of two-individual 
relatedness , there are four equally probable ways of sampling two alleles, two for each two 
relatives. Si is the average over the four ways that a given pair of alleles can be sampled. 

i

i = 1 0iS =
ϕ
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For individual A: S  for the situation 1, 2, 3 and 4.of Jacquard (1972)  for the others. i = 1 0

1 0

iS =
 
For individual B: S  for the situations 1, 2, 5 and 6. S  for the others. i = i =
 

For the pair of individual A and B we have defined i 11 12 21 2
1S (I I I I
4

= + + + 2)

1

. Therefore: 

  for the situation 1, iS =

 i 1S 2=  for the situations 3, 5 and 7 

 i 1S 4=  for the situation 8, 

  for the situations 2, 4, 6 and 9. iS = 0

i ,

 
The expectation of S  (denoted ) conditioned upon relationship, is as we have seen: i is
 
  (1bis) 2

i is p (1 )p= ρ + − ρ
 
Where  is the two-gene relationship, which equals either f or . This expectation assumes the 
population gene frequencies equal the pedigree gene frequencies (the gene pool from which alleles 
were randomly drawn during the formation of the pedigree. The probabilities over several 
independent loci are the product of these single-locus probabilities. 

ρ ϕ

 
Correlation method 
 
To obtain an efficient method of moments estimator (MME) for two-gene relationship, one first 
obtains estimates for each marker allele i, for i=1 to n (the number of alleles at the locus), based 
upon the observation of whether the alleles are both of type i or not. Although there are n(n+1)/2 
combinations of alleles each of which can give an estimate of relationship, these estimates are not 
independent, and only the set of n estimates corresponding to the sharing of allele i, i=1, n, are 
sufficient to capture all information in the data (Robertson and Hill, 1984). The variance-covariance 
matrix of these n estimates is then used to optimally combine the n estimates in a linear fashion into 
a single estimate. 
 
By equating observed quantities to their expectations in (1bis), we obtain an estimator for each 
allele i at an n-allele locus as: 
 

 
2

i i
i

i i

S P ,i 1,...., n
P Q

∧ −
ρ = =  (2) 

 
where  is the estimate of gene frequency p  (capital letters are used to denote estimated 
quantities), and the hat denotes the estimate. For simplicity, gene frequency can be estimated by 
collecting alleles in the entire sampled population (this assumes low mean relationship). 

iP 1 Q= − i i

 
The total estimate of relationship (relatedness or inbreeding is then the weighted average: 
 

  (3) i i
i

w
∧ ∧
ρ = ∑ ρ
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Where the weights  sum to unity. iw
 
To obtain the optimal weights, note that the n estimates of relationship (2) have variances and 
covariances: 
 

 i i
i 2 2

i i

s (1 s )var( )
cp q

∧ −
ρ =  

 i j
i j

i j i j

s s
Cov( ) , i, j 1, 2,..., n

cp p q q

∧ ∧ −
ρ ρ = =  

 
These are obtained by noting that the S  are multinomially distributed with variances s (  and 

covariances - , and that  for a and b constant. The constant c=1 for f 
while C  for ϕ ; its exact value is irrelevant because it cancels when computing weights. 

i

b)
i 1 s )− i

i js s 2Var(aX a Var(x)+ =

4≤
 
The optimal weights are then found via a standard procedure of weighting correlated estimates. 
 

Briefly these weights minimize  where w is an n element column vector of weights 
and V is the variance – covariance matrix of allele- specific estimates. 

TVar( ) w Vw
∧
ρ =

 
Unless one assumes a prior of ρ =  or ρ =  the expression of w must be solved numerically. 0 1
 
Then multi-locus estimates of relatedness involve a second stage of weighting. After a weighted 
estimate is found for each locus, a “grand” weighted estimate is found by weighting estimates 
across loci. If loci are unlinked and in linkage equilibrium, estimates from different loci will be 
independent and the weighting used for a given locus is simply proportional to the inverse of its 
variance as computed by the above weighting procedure. 
 
A simple simplified MME estimator can be obtained by assuming ρ =  in the weights. The 
procedure for obtaining optimal weights gives for allele i  for n number of alleles at 
the locus. This gives an estimator for a single locus, which combines information along alleles, as 

0
1)−i iw q /(n=

 

 
2

i i
i i

S P
(n 1)P

∧ −
ρ = ∑

−
 

 
To combine estimates among loci, we use the fact that at zero true relationship and known gene 
frequency, the variance o f single locus weighted MME is proportional to 1/ , regardless of 
the frequency distribution of alleles. The inverse of this quantity serves as the weight. This gives a 
simplified multi locus estimator of relationship, based upon a prior ρ  of zero as: 

(n 1)−

 

 
2

i i
i, i

S P / (n 1)
P

∧ −
ρ = ∑ ∑ −l l

l
l ll

 

where l  denotes the locus. This estimator was first described by Li and Horvitz (1953). 
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A second simple method of moment estimator for ρ  can be obtained by assuming =1 in the 
weights. The weights then become , for J the expected homozygosity. Over m 
independent loci, this estimator equals: 

ρ

i i /(1 J)p q −

 

 S J
1 J

∧ −
ρ =

−
 

 

for 2
i

i,

1J
m

= ∑ l
l

P  the mean expected homozygosity over the m loci and i
i,

1
m

= ∑ l
l

S  the arithmetic 

average of allele similarity between the two individuals across loci. 

S

 
Simulation results showed the variance of the MME to be approximately a function of 1/m for m 
the number of loci. However for relation ships spanning a wide range and for many different 
distributions of gene frequency a systematic bias on the order of 1/N was observed, for N the 
number of individuals used to estimate gene frequency. Greater efficiency is obtained by using loci 
with even gene frequencies. The estimation of MME almost plateaus by 40-60 individuals where it 
nearly equals the predicted asymptotic variance  for n alleles at each of m loci. ](1/ 4(n 1) m −
 
Regression method 
 
Lynch and Ritland (1999) pursueing their search for optimal estimators for common situations 
when the number of loci are under 50, changed the name MME in that of correlation method and 
proposed a new one on the same principles but based on a regression approach. They also refined 
their analyses in proposing estimators for ”higher-order” coefficients. The relatedness (kinship) 
coefficient for two individuals (x and y), two times their coefficient of coancestry (or parentage), 
can be written: 
 

 xy
xy xyr

2
= +V
ф

 

 
Where .is the probability that a single gene in x is identical by descent with one in y, andV  is 
the probability that each of the two genes in x is identical by descent with one in y. For parents and 
offspring,  =1 and 

xyф

Ф

xy

V=0; for full sibs, =0.5 and Ф V=0.25; and for half sibs,  =0.25 and Ф V=0. 
Consider a single locus with n alleles and let x be the reference individual (with alleles a and b) and 
y be the proband individual (with alleles c and d ). The conditional probabilities for the n(n+1)/2 
possible genotypes in y can be expressed as a function of xy, Ф Vxy and the known allele 
frequencies: 
 

  0 xy xy
1 xy 2

P(y cd x ab) P (cd).(1 )
P (cd ab). P (cd ab).

= = = − −
+ +

V
V

| ф
| ф | xy

 
Where  is the Hardy-Weinberg probability of genotype cd, and P  and  
denote the probabilities of genotype cd in y given genotype ab in x, the first being conditional on 
the two individuals having one gene identical by descent and the second being conditional on two 
genes being identical by descent. 

0P (cd) 1(cd ab)| P2(cd ab)|

Considering first x being homozygous for allele i and letting pi be the frequency of the ith allele, the 
preceding equation can be written: 
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2 2
i i i xy i xy

i i i i
i i xy

P(ii ii) p p (1 p ) (1 p )
P(i. ii) 2p (1 p ) (1 p ) (1 2p )

2p (1 p )

= + − + −
= − + − −
− −

V

V

| ф
| фxy

 
which can be rearranged to yield the following estimators: 
 

 ( )

i i
xy 2

i2
i i i

xy 2
i

ˆ ˆ(1 p )P(i. ii) 2p P(ii pˆ
(1 p )

ˆ ˆp p P(i. ii) 1 2p P(ii
ˆ

(1 p )

+ +
=

−
− + −

=
−

V

| |ii) - 2ф

| |ii)

i

 

And, 

 i
xy

i

ˆ ˆP(i. ii) 2P(ii pr̂
2(1 p )
+

=
−

| |ii) - 2  

 
P(i./ii) and P(ii/ii) are estimated as 0/1 variables. Both probabilities are 0 if the proband y has no 
alleles in common with the reference x. Thus for example when individual y contains 2, 1 and 0 i 
alleles the estimates of rxy are 1, (1-2pi)/2(1-pi) and –pi/(1-pi) respectively. 
When x is heterozygous and the locus multiallelic there are six classes of conditional probabilities. 
Then the number of observed 0/1 variables exceeds the number of unknows (Φ and ∆). To deal with 
this situation a weighted least-square approximation is provided. 
A general one locus estimator which cover all the cases is best described by introducing “indicator 
variables” for the sharing of pairs of alleles: 
As before let the reference individual x have the alleles a and b and the proband individual y alleles 
c and d. If the reference individual is homozygous, Sab=1 while if it is heterozygous Sab=0. Likewise 
if allele a from the reference individual is the same as allele c from the proband Sac=1, while Sac=0 
if it is different. In total, there are six S’s corresponding to the six ways of choosing two objects 
without replacement from a pool of four objects. Letting pa, pb be the frequencies of alleles a and b 
in the population, the fully general expressions for the two locus-specific coefficients of primary 
interest are: 
 

 ( )a bc bd b ac ad a b
xy

ab a b a b

p (S S ) p S S 4p p
r̂

(1 S )(p p ) 4p p
+ + + −

=
+ + −

 

 

 ( )a b a bc bd b ac ad ac bd ad bc
xy

ab a b a b

2p p p (S S ) p (S S ) S S (S S )
ˆ

(1 S )(1 p p ) 2p p
− + − + + +

=
+ − − +

V  

 
There is no particular reason to use one member of a pair of individuals as the reference and the 
other as proband. Thus the reciprocal estimates xy and ryx can be arithmetically averaged to further 
refine the pairwise relationship estimates. 
 
Multilocus estimates 
 
As shown before, with statistically independent marker loci the locus-specific weights that 
minimize the sampling variance of the overall estimates are simply the inverse of the sampling 
variance of the locus-specific estimates. Approximations can be obtained by assuming x and y 
unrelated and general expressions for the weights w(l) are given by: 
 

12 



 

ab a b a b
r,x

a bxy
ab a b a b

,x
a bxy

(1 S )(p p ) 4p p1w ( )
2p pˆVar r ( )

(1 S )(1 p p ) 2p p1w ( )
2p pVar ( )ˆ

+ + −
= =

  
+ − − +

= =
  

V

l
l

l
V l

 

 
Other methods 
 
Queller and Goodnight (1989) presented also a regression based estimator for two-gene relatedness. 
Their one locus estimator was designed to estimate relatedness within groups of individuals but it 
can be adapted for estimating pair wise relationships. However their estimator  
 

 ( )ac ad bc bd a b
xy

ab a b

0.5 S S S S p p
r̂

1 S p p
+ + + − −

=
+ − −

 

 
has limited utility with diallelic loci. Indeed, if x is heterozygous then Sab=0 and the equation is 
undefined because pa+pb=1 
 
Eding and Meuwissen (2001) with similar approach and starting from Lynch’s (1988) formula 

estimating f from the observed similarity S  at a locus l  and h  the probability of alleles 

of locus l  being AIS (alike in state), are writing: 

l
n 2

i,
i 1

p
=

= ∑
l

l l

f

 

(1 ter)  
E(S ) P

f (1 f )h
h (1 h )

=
= + −
= + −

l

l

l l

l

 
This leads to the variance of f  ˆ

 (4) 2
1ˆvar(f ) var(S )

(1 h )
=

−
l

l
 

 
Since S is the probability that two random alleles drawn from two individuals are alike, the 
distribution of S is binomial. The variance of S  for a locus l  is given as: l
 
(5)  var(S ) P (1 P )= −l l l
 
Filling (1 ter) in (5) yields 

(6)  
2 2 2

2 2

Var(S ) f (1 h ) h f (1 h ) 2fh h

f (1 h )(1 2h ) h (1 h ) f (1 h )

 = − + − − + + 

= − − + − − −

l l l l l

l l l l

l

l
 
Substitution of 6 in 4 gives: 

(7) 

2 2

2

2

f (1 h )(1 2h ) h (1 h ) f (1 h )ˆVar(f )
(1 h )

h f (1 2h ) f (1 h )
(1 h )

− − + − − −
=

−

+ − − −
=

−

l l l l l

l

l l l
l
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An over all loci estimation of f can be obtained through averaging over m analysed loci. We may 
use the inverse of the variance of the estimates of f for each independent locus as weights. We 
obtain the following estimation: 
 

(8) 

m

2l 1
m

2l 1

(1 h )f̂
h f (1 2h ) f (1 h )

f
(1 h )

h f (1 2h ) f (1 h )

=

=

 −∑  
+ − − −  =

 −∑  
+ − − −  

l
l

l l

l

l l

l

l

)

 

 
 
Maximum Likelihood Estimator (MLE) 
 
 
The maximum likelihood procedure was extensively investigated by Thompson (1975, 1976) for 
inferring pairwise relationship. She discussed the power of likelihood to distinguish among major 
types of relationships (parent-offspring, full sibs, half sibs, etc…) and unrelated. She found that due 
to large errors of inference it is difficult, even with 20 highly polymorphic loci, to distinguish 
among the major classes of relatives. However MLE gives asymptotically efficient estimates when 
the number of loci exceeds 50. This allows test of hypothesis via likelihood ratios and a better 
analytical analysis of the problem as we will try to demonstrate now. 
 
The likelihood Y of the genotype of individual A for m independent loci is the product of the 
likelihood for each locus: 
 

  [ ]
jk

A A
=1 =1

Y h (1 h ) f (1 h ) (1 f= ∏ + − × ∏ − −l l l
l l

 
k loci being homozygous and j loci being heterozygous for individual A with  coefficient of 
inbreeding.  being the probability of being homozygous for the locus  in panmixia (equals the 
two alleles being AIS), (1 ) being the probability of being heterozygous: 

Af
hl l

h− l

 
jkk jA A

A A
=1 =1A A

(1 f ) fY (1 f ) h (1 f ) (1 h )
(1 f ) (1 f )

 −
= + ∏ + × − ∏ − + + 

l l
l l

 

 
Taking the natural logarithm: 

jk
A A

e e A e e A e
1 1A A

(1 f ) fLog Y k Log (1 f ) Log h j Log (1 f ) Log (1 h )
(1 f ) (1 f )= =

 −
= + + ∑ + + − + ∑ − + + 

l l
l l

 

 
Derivative of LogeY with respect to  Af :

[ ]
k

e
1A A A A

Log Y 1 2h1 1k j
f (1 f ) (1 f ) h (1 h ) f 1 f=

∂ −
= + ∑ −

∂ + + + −
l

l l l A−
 

 
Which is zero for: 
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[ ]

k
A A

1 A

2h 1(1 f ) (1 ) j (1 f )
h (1 h ) f=

 − − ∑ − = + + −  
l

l l l
 

Defining S  for homozygotes and S  for heterozygotes we have for the   loci 1=l 0=l m k j= +
 

 
m m

A A
1 1A

2h 1(1 f ) S (1 ) (1 f ) (1 S )
h (1 h ) f= =

 − − ∑ − = + ∑ − + −  
l

l l
l ll l

 

 
Considering Sl taking the values 0 ¼ ½ 1, according to the situation of identity (see p7: generality) 
this formula allows the estimation of  the parentage coefficient instead of fϕ A. 
By definition of A and B 
 
  A A(1 f ) A (1 f ) B− = +
 

                       A
A Bf
A B

−
=

+
 

 
One can note that for 

 

m 2
i

i 1

A

h p 0.5

k jf
m m

=
= ∑ # ∀

= −

l l
 

 
A very simple estimator. This estimator is also independent from f  and need therefore no prior 
assumptions. 

A

The same argument at the allele level (not as before at the locus level) starting from the formulae 
just before (1) leads to similar results. In this case the weights ri take in account pi the allele 
frequency changing hl in pi. 

Let us study the weight 
A

2h 1r 1
h (1 h )f

 −
= − + − 

l
l

l l

rl


  of a homozygous locus according to  

and the prior on f .These weights are indeed functions of the parameters that we are trying to 
estimate. Their estimation needs therefore prior assumptions or iterative resolution. We can also 
remark that is the inverse of the effective number of alleles A

n 2
i

i 1
h p

−
= ∑l

A

h l e at the locus (i.e the equivalent 
number of alleles when even frequencies; Ae=2 for two equiprobable alleles, Ae=n for n 
equiprobable alleles). The weight can easily be expressed in terms of Ae: 
 

 ( )
( ) A

2 A
r 1

1+ A 1 f
e

e

 − = − 
−    

l  

 
Table 3 and figure 2 shows that this weight increases as h  tends to zero and as f tends also to 
zero. This increase tends to be very drastic for  being under 0.10 and  smaller than 0.05. 

l A
hl Af
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Table 3 – r  weight of a homozygote locus in estimation of f  by MLE according to h  probability 
of AIS and the prior on f  

l l

n
2
i

i 1A

2 h 1r 1 h p
h (1 h f =

 −
= − = ∑ + − 

ll
l l

l l
 

 
 
 

Af  
hl  

0 0.01 0.05 0.125 0.25 0.50 1 

0.05 19.000 16.126 10.231 6.333 4.130 2.714 1.9 

0.10 9.000 8.339 6.517 4.765 3.462 2.455 1.8 

0.20 4.000 3.885 3.500 3.000 2.500 2.000 1.6 

0.30 2.333 2.303 2.194 2.032 1.842 1.615 1.4 

0.40 1.500 1.493 1.784 1.421 1.364 1.286 1.2 

0.50 1 1 1 1 1 1 1 

0.60 0.667 0.669 0.677 0.692 0.714 0.750 0.8 

0.70 0.429 0.431 0.441 0.458 0.484 0.529 0.6 

0.80 0.250 0.252 0.259 0.273 0.294 0.158 0.2 

0.90 0.111 0.112 0.116 0.123 0.135 0.158 0.2 

1 0 0 0 0 0 0 0 
 
 
 
This over weighting of some homozygous loci favouring very polymorphic loci (or rare alleles) will 
make the estimation of  too much dependent of the situation of identity observed at few loci  Af
and the exact determination of alleles frequencies at such loci will be more difficult due to the low 
expected values. Contrary to general agreement I would therefore not recommend to use such loci. 
Biallelic loci with the value of  not so far from 0.5 would in my opinion allow more precise 
estimations because they are independent of the prior on f  and are allowing more precise 
estimations of alleles frequencies. Table 4 shows the variations in  according to n the number of 
alleles and a frequency disequilibrium supposing a constant decrease of allele frequency from the 
most to the least frequent one. It can be observed that  is minimum for evenness and is 
decreasing with the number of alleles. Near 0.5 values for  are more easily obtained for bi allelic 
loci, multi allelic  have to respect a constant decrease in alleles frequencies near 0.30 to satisfy to 
the condition. This observation is leading us to propose a kit of single nucleotide polymorphism 
(SNP) to study parentage and connected problems in horse populations. 

hl
A

l

hl

h

lh
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Table 4 - h  probability of being alike in state according to the number of alleles n and a model 
supposing constant decrease of allele frequency from the most to the least frequent one. 0 a  is 

the constant percentage of decrease. a=1 represent the even frequencies case. . 

l
1< <

n
2
i

i 1
h p

=
= ∑

l
l

 
n 

a 
2 3 4 5 10 20 

0.1 0.835 0.820 0.818 0.818 0.818 0.818 

0.2 0.722 0.677 0.669 0.667 0.667 0.667 

0.3 0.645 0.568 0.547 0.541 0.538 0.538 

0.4 0.592 0.487 0.451 0.437 0.429 0.429 

0.5 0.556 0.429 0.378 0.355 0.334 0.333 

0.6 0.531 0.388 0.324 0.292 0.253 0.250 

0.7 0.516 0.361 0.288 0.248 0.187 0.177 

0.8 0.506 0.344 0.265 0.219 0.138 0.114 

0.9 0.501 0.336 0.253 0.204 0.109 0.067 

1.0 0.500 0.333 0.250 0.200 0.100 0.050 
 
 
 
Promoting the realisation of a kit of SNP 
 
 
From the above studies it can be concluded that parentage analysis need a lot of markers to reach a 
reasonably good precision in practice. The problem to ascertain sire and dam of a foal is not so 
complicated and we have shown (Table1) that 11 polymorphic microsatellites markers are sufficient 
to solve it properly. However the problem of remote parentage remains open and pedigree 
information is often not available to solve it. To help for the resolution of this dilemma we propose 
the realisation of a kit of SNP. 
 
This kind of markers has the advantage of being easily revealed by DNA chips, being bi-allelic, co-
dominant and null alleles free. This greatly simplify their management in terms of population 
genetics. Although not as discriminant as polymorphic loci, 5 to 10 SNP are considered equivalent 
from this standpoint to one microsatellite. 
 
It is thought in addition that a SNP can be found in mammals every 500 to 1000 pairs of bases. 
Microsatellites are expected only every 25 to 100 kilo-bases. The screening of horse genome would 
be therefore much more precise with SNP than with microsatellites. 
 
It is also known that mammal’s genome is approximately constituted by 60 segments of 50 
centimorgans. 60 independent markers at a bare minimum can therefore be expected and 120 at the 
maximum. 
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Conclusion 
 
Due to their potential great number and their revelation facilities (positive or negative responses on 
DNA chips) allowing to squize sequencing for routine analysis, SNP markers allow to consider the 
tracing of parentage. 
 
The realisation of a kit of several hundreds of SNPs would allow precise estimation of allele 
frequencies and a choice of 100-120 independent loci to trace the parentage as seen before. This 
could be a goal for at the end a better mastering the real parentage between individuals. For small 
populations the question of the evolution of inbreeding should also be better faced than actually by 
only taking pedigrees in account. 
 
This new kit would also facilitate the comparisons of horse populations according to more precise 
genetic distances. 
 
The realisation of such a tool is only a problem of engineering and financing not a question of know 
how. In my opinion from the solution of this political problem will depend the future of genomic in 
horse breeding. I treated here only one part of the whole problem. But this part appears sufficient to 
justify the approach. 
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