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Abstract
It is well known that SCS increases as a result of udder infection, further the health status of
each cow for each test-day on which SCS is recorded is usually unknown. Hence, the
observed SCS can assumed being (at least) a two-component mixture depending on mastitis
status. In this study a hierarchical two-component mixture model was developed, assuming
that the health class membership associated with each test-day record of SCS was fully
determined by an underlying liability variable. The a priori probability of mastitis may vary
between different sub-groups, and the liability may thus be associated by some fixed and
random effects. Based on analysis of simulated data, the model seemingly gives unbiased
estimates of all parameters, and also provides a better tool for selection than crudely selecting
for lower SCS. The proposed model could easily be extended to handle a wider range of
problems related to genetic analyses of mixture traits.

Introduction
For certain traits an unknown underlying group structure may affect distribution of
observations. An observation may therefore be drawn from K mutually exclusive and
exhaustive distributions (or “groups”). In animal breeding, mixture models have so far
primarily been used in QTL-analyses. Other examples of structures that may cause mixture
distributions in quantitative traits are factors such as preferential treatment and disease. The
latter may cause mixture distributions by mechanisms controlling the relationship between
unobserved disease traits (categorical) and continuous traits. For example, SCS may be
regarded as a trait sampled from either an “uninfected” or “mastitic” cow, where SCS in the
“uninfected” and “mastitic” groups may be normally distributed with different means (e.g.,
Detilleux and Leroy, 2000), and possibly different variances. Mixture models can be used to
categorize the observations into putative disease categories. 

Acquiring information about unknown group structures affecting the data could be of great
value for several reasons. In some cases, the main purpose is to correct for effects that may
cause bias in genetic evaluations (e.g., preferential treatment). In other cases identification of
structures, such as disease categories could be used for herd management decisions, medical
treatment, and may also improve genetic evaluation of disease traits (e.g., mastitis) by making
better use of information from related continuous (mixture) traits (e.g., SCS and electrical
conductivity in milk). 

So far mixture models for detection of mastitis based on SCS has been developed and
analyzed on simulated data (e.g., Ødegård et al., 2003). In these models probability of mastitis



is estimated based on the observed SCS, and observations categorized into “healthy” and
“mastitic” classes according to this probability. When calculating probability for mastitis, the
model seeks to adjust for “base level” SCS of the cow. However, the a priori probability for
mastitis is often assumed equal for all observations, which is not realistic for real data.
Further, such models do not provide any good criteria for selection for lower incidence of
mastitis. A hierarchical mixture model may be needed to implement a more flexible, practical
and realistic model. In this model, probability for mastitis may depend on effects such as herd-
test-day, stage of lactation, and additive genetic effects, and implies a direct approach for
predicting breeding values for liability to mastitis using data coming from mastitis-related
mixture traits. In the following we will shortly describe a simple version of this model.

Method
The setting and notation are as in Ødegård et al. (2003). Briefly, the data consists of n
measurements for a quantitative trait, such as SCS of a cow. A 2-component Gaussian
mixture model poses that the ith measurement (i = animal or record within animal), given
location and dispersion parameters (), and probabilities   nPPP ,....,, 21P , has the
distribution:
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where Pi is the a priori probability that SCSi is drawn from the distribution )(N  , and (1-Pi) is
the a priori probability that it is drawn from )(N*  . Ødegård et al. (2003) assumed that
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Estimation by maximum likelihood or by Bayesian approaches are facilitated by augmenting
the density above with auxiliary indicator (0, 1) variables Zi (i = 1, 2, …., n). It is assumed that
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and the joint density of SCS and Z is given by
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is the conditional probability distribution of Z, given SCS,  and P. If it can be assumed that
 ii ZSCS , , i=1,…,n, are mutually independent given  and P, then 
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is the posterior probability (given SCSi,  and P) that the draw is made from )(N*  (mastitis),
whereas the complement is the posterior probability that the draw is from )(N  . Here, SCSi is
the somatic cell score for record i. 
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In this model we postulate the existence of an underlying continuous random variable, called
liability (), which determines the actual mastitis status for each observation. This is a
threshold-liability model (Wright, 1934; Dempster and Lerner, 1950; Gianola, 1982; Gianola
and Folley, 1983), which has been used for genetic analysis of clinical mastitis as a binary
response (e.g., Heringstad, 2003). Here, the liability is incorporated into what we term a
liability-normal mixture (LNM) model. In both models true mastitis status goes from 0 to 1 if
liability exceeds a given threshold T. In the standard threshold liability model, data consists of
observed binary responses (say, “presence” or “absence” of clinical mastitis), whereas in the
LNM model, data consist of observed SCS. However, distribution of SCS changes from N()
to N*() according to mastitis status, and putative mastitis status may therefore be inferred
based on the observed SCS. In this model the a priori probability of IMI+, for a specific
observation i, is:
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where    is the standard normal cumulative distribution function. Thus, Pi is not a
parameter in this model, but a function of the expected liability. The threshold is assumed to
be equal to zero.

Modeling SCS and the liabilities
Conditionally on Z=z and parameter vector , we assume that the SCS and  variables can be
modeled as:
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where; y = column vector of SCS and liability variates, Mz = (nn) diagonal matrix of
indicator variables, with typical element zi (i = 1, 2, ..., n), SCS0β = vector of “fixed” effects
affecting SCS common to all cows, SCS1β  = vector of “fixed” effects affecting SCS peculiar to

cows with mastitis, 
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Standard prior distributions were assumed for all location and dispersion parameters (Inverse
Wishart for variance-covariance matrices, random effects were assumed normally distributed,
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and proper flat priors were assumed for “fixed” effects). Residual correlation between SCS
and  was not estimable with this model, and was therefore set to zero. Estimation was carried
out with Gibbs sampling.

Simulation study
The model was tested using simulating data. Four different scenarios were chosen, and each
scenario was replicated 20 times. For all scenarios, four generations, each consisting of 800
cows from 10 sires, were simulated. Mastitis frequency was set to 25%. Residual variance for
SCS was assumed homogeneous, independent of disease category. For comparison purposes
three models were fitted; a standard repeatability model for SCS ignoring the mixture (IM), a
mixture model for SCS ignoring the structure of the liability (NM) (equivalent to Ødegård et
al., 2003), and finally a LNM model. The input parameters and means of posterior means for
the same parameters estimated with the LNM model are presented in Table 1.

Table 1. Input (IP) and estimated parameters (EP) for four different scenarios, with standard error (SE).
Estimated parameters are reported as means of posterior means for 20 replicates from each scenario. 

Scenario 2
aSCS

σ 2
aσ
 λSCS,ar 2

pSCS
σ 2

pσ
 λSCS,pr 2

eSCS
σ

1
IP 0.100 0.120 0.000 0.100 0.120 0.000 0.800
EP 0.101 0.114 0.039 0.098 0.126 0.031 0.796
SE 0.012 0.023 0.118 0.012 0.026 0.111 0.015

2
IP 0.100 0.120 0.500 0.100 0.120 0.000 0.800
EP 0.110 0.129 0.468 0.091 0.109 0.068 0.798
SE 0.015 0.025 0.083 0.011 0.021 0.122 0.012

3
IP 0.100 0.120 -0.500 0.100 0.120 0.000 0.800
EP 0.099 0.112 -0.447 0.102 0.125 0.009 0.804
SE 0.015 0.025 0.098 0.015 0.032 0.118 0.015

4
IP 0.100 0.059 0.000 0.100 0.125 0.000 0.800
EP 0.094 0.078 0.085 0.105 0.133 0.001 0.804
SE 0.013 0.017 0.132 0.013 0.030 0.127 0.015

The means of the posterior means for all parameters were not significantly different from their
true values. However, if the structure of the underlying liability is ignored, parameters for SCS
were confounded with those of the simulated liability. Further, specificity and (even more)
sensitivity were slightly reduced (Table 2). 

Table 2. Sensitivity and specificity estimated with a non-hierarchical normal mixture model (NM) and a
hierarchical liability - normal mixture model (LNM). Parameters are reported as means of posterior means for
20 replicates from each scenario.

Scenario NM LNM

1 Sensitivity 0.630 0.660
Specificity 0.879 0.885

2 Sensitivity 0.622 0.664
Specificity 0.887 0.893

3 Sensitivity 0.618 0.646
Specificity 0.877 0.882

4 Sensitivity 0.616 0.641
Specificity 0.890 0.893

An advantage of the LNM model, compared with other mixture models is that it provides
EBVs for liability to putative mastitis, which may be directly used in selection. In Figure 1
correlations between true breeding values for liability to mastitis and EBVs from IM and
LNM are presented for the different scenarios. Compared to the standard test-day model for
SCS, ignoring the mixture, EBVs for liability to mastitis from the LNM model had
consistently higher correlations (9-530%) with the true breeding values, particularly when
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assuming a negative genetic correlation between “baseline SCS” and liability to putative
mastitis (indicating that high SCS in healthy cows reduces risk of infection).

Figure 1. Correlations between true breeding values for liability to mastitis and predicted breeding values
(accuracy) estimated with a standard model for SCS ignoring the mixture (IM) and a liability – normal mixture
model (LNM). Average correlations for 20 replicates from each scenario are presented.
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Future aspects
In addition to selecting for cows able to avoid infection, we may also be interested in the
cows’ ability to recover when infection occurs. This may be achieved by developing a mixture
model where size of SCS response to infection has a genetic component, which in turn may be
related to probability of recovery from disease. The model could also easily be extended to
multivariate mixtures, consisting of multiple mixture traits depending on same mixture
variable (e.g., SCS and electrical conductivity in milk), different mixture variables (e.g., SCS
and a trait affected by QTL), or both mixtures and non-mixture traits. More advanced
mixtures, consisting of more than two components (e.g., healthy, subclinical mastitis, clinical
mastitis) may also be developed.

Conclusion
Inferring an underlying liability to mastitis in mixture models for mastitis-related mixture
traits probably gives a more realistic and accurate model, both in terms of genetic evaluations
and identification of diseased animals. Based on simulation studies the model seemingly gives
unbiased estimates of the parameters. The proposed model could easily be extended to handle
a wider range of problems related to genetic analyses of mixture traits.
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