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Summary  
Quantitative Trait Loci (QTL) are usually looked for using classical interval mapping 
methods which assume that the trait follows a normal distribution. However, these methods 
cannot take into account the characteristics of most survival data such as non normal 
distribution and presence of censored data. In this paper, we propose two new QTL 
detection approaches which allow to consider censored data. One interval mapping method 
uses a Weibull model (W) which is popular to model survival trait and the other uses a Cox 
model (C) which avoids making any assumption on the trait distribution.  
Using simulated data, we compare W, C and a classical interval mapping method using a 
Gaussian model on uncensored data (G) or on all data (G’ where censored data are analysed 
as uncensored data). An adequate mathematical transformation was used for parametric 
methods (G, G’ and W).  
When no data were censored, the three methods gave similar results. However, when some 
data were censored, G had a power of QTL detection but also accuracy of QTL location 
and of QTL effects, which decreased considerably with censoring, particularly when 
censoring is at a fixed date. Considering G’, this decrease with censoring is also observed 
but it is low. Censoring had a negligible effect on results obtained with W and C methods.  
 
1. INTRODUCTION 
 
 QTL (Quantitative Trait Loci) detection methods are used to look for chromosomal 
regions having an effect on production traits of interest. This type of analysis has two main 
aims. In selection programs, information about markers linked to a QTL can be considered 
(Boichard et al., 2000). From a more fundamental point of view, detected chromosomal 
regions can be used to look for gene(s) involved in the biological mechanisms influencing 
the trait under study.  
Classical QTL interval mapping methods assume that traits follow a normal distribution 
(Lander & Botstein, 1989; Knott et al., 1996; Elsen et al., 1999; etc). However, traits in 
animals and plants are often non-normally distributed. For example, categorical data (e.g., 
dead or alive) and survival data (e.g., length of life) are often recorded to describe 
resistance to diseases. For such traits, the use of classical QTL detection methods induces a 
low power of detection and a bias in the estimate of effects and position of the QTL. 
Interval mapping methods have been proposed to analyse discrete traits (Kadarmideen et 
al., 2000), but none applies to survival data. 
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Survival data are positive random variables (called failure time here after) describing in 
some sense the length of the interval between a point of origin and an end point. Survival 
analysis takes into account distribution forms (often far from the normal distribution) and 
censoring (i.e., the fact that the end point is not observed for a part of the data). When using 
classical interval mapping methods, either censored data are excluded (missing data) or 
censored data are incorrectly considered as uncensored. To estimate fixed effects, 
proportional hazard models are classically used in survival analysis. They can be 
parametric such as the Weibull regression model (Kalbfleisch and Prentice, 1980) or semi 
parametric such as the so-called Cox semi-parametric model (Cox, 1972). In the present 
paper, these two types of models were used to look for QTL based on an interval mapping 
method. In order to compare these methods with each other and with the classical method 
assuming a normal distribution, experimental data from an F2 population (Sebastiani et al., 
1998), were used to produce simulated data where QTL effects and percentage of censored 
data are variable.  
 
2. MODEL DEFINITIONS  
 
In this section of the paper, the QTL detection methods are first developed for inbred 
crosses. The methods are presented in two parts. First, the general form of the likelihood 
and the classical expression for the contribution of one observation to the likelihood are 
described for a classical interval mapping method using a Gaussian model. With this 
method, it must be underlined that only uncensored data can be legitimately included. 
Therefore, censored data were excluded from the analysis (G) or were illegitimately 
assumed as uncensored (G’). Second, the new interval mapping methods using a Weibull 
model (W) and a Cox model (C) are presented. In the latter methods, uncensored and 
censored data were included.  
 
(a) General expression of the likelihood. 
In an F2 population, considering that individuals are produced by heterozygote parents, 
each animal, k, has 4 possible QTL genotypes (1,1), (1,2), (2,1), (2,2), denoted as g=1,…, 
4. As described by Lander & Botstein (1989), the general form of the likelihood at a 
chromosomal location x, can be written as : 

( | ) ( |x x
k k

gk

p d g M l k g
⎧ ⎫

∆ = = ⋅⎨ ⎬
⎩ ⎭
∑∏ )  (1) 

where p(dx
k=g|Mk) is the probability that animal k has genotype g conditional to its flanking 

marker information. The contribution to the likelihood l(k|g) of the observation k depends 
on the assumed distribution of the trait (yk). Let Ω (Ω=1, …,N) represent the list of 
uncensored (Ωunc=1,…, Nunc) and censored observations k (Ωcens=Nunc+1,…, Ncens): 
Ω=Ωunc+Ωcens.  
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Thereafter, we considered three alternatives corresponding to the Gaussian, Weibull or Cox 
models. 
 
(b) Interval mappping method using a Gaussian model: G and G’. 
In (1), the contribution l(k|g) of animal k with genotype g to the log-likelihood, using a 
classical interval mapping method (Lander & Botstein, 1989) can be easily written only for 
an uncensored observation: k∈Ωunc. So, the contribution to the likelihood is: 

2, )1 1( | ) exp
22

k k g
unc

y x qtl
l k g

µ β
σπσ

⎡ ⎤⎛ ⎞− − −
⎢ ⎥∈Ω = − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2) 

where yk is the trait (failure time) of individual k, µ is the mean, σ is the standard deviation, 
β is the (nc×1) vector of covariate effects, nc the number of levels of covariate effects, xk’ is 
the kth row of the (Nunc,nc) incidence matrix X, and the QTL effect, qtlg is equal to - a if 
g=1, d if g=2 or 3 and a if g=4, where a and d are additive and dominant effects, 
respectively.  
We distinguished two different Gaussian approaches: G considered alone uncensored 
information in the likelihood (k∈Ωunc) and G’ considered all information (k∈Ω, so the 
censored observations were assumed as uncensored observations). 
 
(c) Interval mapping methods using Weibull and Cox survival models: W and C. 
Survival analyses allow properly to consider censored observations. These analyses 
generally assume a random (i.e., non informative) censoring (Kalbfleisch & Prentice, 
1980). Some useful definitions of functions are recalled here. If t represents the actual 
failure time, f(t) is the density function, S(t) is the survivor function and h(t) is the hazard 
function representing the rate at which failure occurs at time t (Kalbfleisch & Prentice, 
1980). 
 
In a parametric Weibull regression model, the hazard function is: 
h(tk)=λρ(λtk)ρ-1.exp(xk’β), where λ and ρ are positive Weibull parameters.  
The contribution to the likelihood of an uncensored observation k (k∈Ωunc) is the density 
function at failure time which can be written as the product of the hazard function and the 
survival function. The contribution to the likelihood of a censored observation k (k∈Ωcens) 
is the value of the survivor function at censoring time S(tk) (Kalbfleisch & Prentice, 1980). 
Then the likelihood can be written: 

[ ] [( ) ( )k

k k
k

h t S tδ∆ = ×∏ ]  (3) 

where δk=1 if k∈Ωunc and δk=0 if k∈Ωcens. 
Therefore, the contribution of the animal k with genotype g to the general form of the 
likelihood in the interval mapping method (expression (1)) using a Weibull model (W) can 
be written as:  
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where δk=1 if k∈Ωunc and δk=0 if k∈Ωcens, yk is the failure time or censoring time of the 
individual k. 
 
The Cox model allows the estimate of the regression coefficients in β making no 
assumption about the form of h0(t[k]). The procedure developed by Cox (1972) to estimate 
covariate effects assumes no tie (i.e. all failure times are distinct) and relies on the 
definition of what he calls a partial likelihood function which is the part of the full 
likelihood function that does not depend on h0(t[k]). In this expression, only uncensored 
observations have a non zero contribution but censored observations participate in the 
denominator of the contribution expression. When there are few ties, Peto (in the discussion 
of Cox, 1972) proposed an approximation which is an expression of the exact likelihood 
function when the baseline hazard function is assumed to be piecewise constant. Peto’s 
version of the Cox’s partial likelihood is: 
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where R(tk) is the list of censored or uncensored individuals kd at risk at time tk, i.e. the set 
of individuals known to be alive just prior to tk. The product is over all uncensored 
observations and no longer over all distinct failure times in Cox (1972). 
In the interval mapping model, there are four terms corresponding to the different 
genotypes of each individual kd. Then to obtain an expression equivalent to (5), the terms in 
the denominator must be weighted by the probability that animal k has genotype g 
conditional to its marker information (p(dx

kd=gd | Mkd). By analogy with (5), the 
contribution of animal k to the likelihood in interval mapping using a Cox model (C) can be 
written as:  
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where R(tk) is the list of individuals at risk at time tk=yk.  
 
3. DATA AND SIMULATIONS 
 
(a) Experimental Design. 
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Data were simulated following the structure of a published experimental design (Sebastiani 
et al., 1998). One hundred ninety one F2 animals were produced using two inbred mouse 
lines. Their survival times were measured after inoculation with a pathogen bacteria, 
Salmonella thiphimurium. All animals died at the end of the experiment, so no data were 
censored. Sebastiani et al. (1998) used two approaches to look for QTL. In the first 
approach, data were log-transformed and analysed using an interval mapping method 
assuming a normal distribution. In the second approach, a Cox regression model was used 
to test the marker effects. When using these two methods, they found QTL located in 
similar regions and having similar effects. 
Here, data were simulated based on the failure time distribution and marker genotypes 
observed in this F2 population, in order to compare the results obtained with the four 
different interval mapping methods previously presented: G, G’, W and C.  
 
Figure 1: Survivor distribution of experimental data used to produce simulations. 
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The failure time distribution of this design (figure 1) was used as the basal survival data 
(the simulation process is explained in the next section). A QTL effect and a censoring 
process were added to this basal distribution as described in the following section. Marker 
genotypes of chromosome 1 were used. This chromosome had the longest typed region.  
Simulations were carried out either under the null hypothesis (no segregating QTL) or 
under the H1 hypothesis of one segregating QTL. Data were censored in two ways: at a 
fixed date or at random dates. Censoring at a fixed date mimics censoring corresponding to 
the end of the experiment. The censoring at random dates allows to consider for example 
censoring due to the death of an animal not related to the disease under study or different 
starting dates (e.g., birth dates or inoculation dates). Five scenarios of censoring were 
considered: uncensored data, 20% and 40% of censored records at random dates, 20% and 
40% of censored records at a fixed date. Under the H0 hypothesis, 1000 simulations were 
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performed for the five types of censoring. Under the H1 hypothesis, a single QTL was 
assumed at 43.5 cM on the chromosome. The QTL was given an additive effect “add” of 0, 
0.3 or 0.5 and either no dominant effect (dom=0) or a fully dominant effect (dom=add). 
Then for each scenario of censoring, six situations with different values of dominant and 
additive effects were considered (500 simulations each time). Therefore under H1, a total 
number of 20 situations were studied.  
 
(b) Simulation process. 
Simulated data were generated using values of uncensored failure times of the experimental 
design (Sebastiani et al., 1998). For an easier presentation, let yk=tk (k=1,..,n) be the 
observed failure times and T[1]<T[2]<…<T[i]<…<T[m] the ordered distinct failure times 
(m≤n).  
First, the survival function S(t), which is the probability to be alive at time t, was estimated 
using the Kaplan-Meier estimator (Kaplan and Meier, 1958): 

∏
<

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

tT/i ]i[

]i[]i[
KM

]i[
n

dn
)t(Ŝ  (7) 

where n[i] is the number of animals known to be alive just prior to time T[i], d[i] is the total 
number of animals dying at time T[i]. This estimate of SKM(t) was considered to be the 
baseline survival function: S0(t)=SKM(t).  
Considering a proportional hazard model, this baseline survival function was used to build 
the survivor function S(t|g) conditional to each QTL genotype (g). Additive and dominant 
effects (add and dom) of the simulated QTL were then included as effects in the 
proportional hazard model, as:  

S(t|g=1)=S0(t) 
S(t|g=2)=S(t|g=3)=S0(t)exp(add+dom)  (8) 
S(t|g=4)=S0(t)exp(2add)  

The generation of simulated records was realised in two steps: firstly the choice of a QTL 
genotype and secondly, the choice of a survival time value. For each animal, the probability 
of the four QTL genotypes was calculated conditional to flanking marker information: 
p(dx

k=g|Mk) (see (1) ). Upon using the three probabilities p(dx
k=1|Mk), p(dx

k=2 or 3|Mk) and 
p(dx

k=4|Mk), a QTL genotype was drawn from a trinomial distribution. Knowing the 
genotype g, the survival function value was drawn from a [0,1] uniform distribution. The 
value of the observed survival time (tk) was obtained by inversing the survival function 
conditional to genotype g, tk= S-1(tk|g).  
In almost all cases, the simulated tk values did not correspond exactly to an originally 
observed value. Therefore, to get realistic tk values, a linear interpolation between the 
original observed tk values or extrapolation beyond the smallest tk value of S(tk|g) was 
applied. This approach allowed the generation of simulated records from a realistic survivor 
distribution without any particular assumption on a true parameter distribution.  
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(c) Censoring process. 
Fixed or random date censoring was applied to the simulated data. When a rate of x% of 
censoring at a fixed date was chosen, the x% largest failure time were censored and the 
censoring time was set to the largest uncensored time. When a rate of x% of censoring at 
random dates was applied, records were randomly drawn from a binomial distribution 
(p=x%) and the censoring time for record k was drawn from a [4, tk] uniform distribution (4 
days being the smallest observed survival time).  
 
(d) Computational techniques. 
Simulated data were transformed to perform the analysis with G, G’ and W. With G and 
G’, a logarithmic transformation was used to partly normalise the data. With W, a 
translation of the data was necessary because there is no failure observations between days 
0 and 4 (Cox and Oakes, 1984). The best transformation was found to be t*=t-3.9 for 
failure time. 
The likelihood function was maximised using a quasi-Newton algorithm implemented as a 
NAG subroutine (E04JYF) for the three methods.  
 
4. RESULTS  
 The G, G’, W and C were computed to estimate maximum likelihood ratio tests 
(LRT) for 4 situations under H0 and 20 situations under H1. The power of these methods 
and the estimates of the additive effect, dominant effect and location of QTL were 
compared.  
 (a) Comparison of QTL detection power of G, G’, W and C. 
In figure 2, the evolution of the power of the 4 methods is presented as a function of the 
QTL effects for the five situations of censoring. Without censoring and with 20% of 
censoring at random dates, the three methods have a similar power, whatever the simulated 
QTL effects. In these situations, the power of all methods becomes close to 100%, even 
though the power of G and G’ decreases slightly for small values of QTL effects. 
With 40% of censoring at random dates, C and W have similar power and are more 
powerful than G and G’. Under a Gaussian model, taking into account censored data is 
slightly more powerful than missing them.  
With censoring at a fixed date, C and W appear equivalent. Otherwise, the power of G 
becomes very low and the larger the dominant effect is, the lower the power is. This trend 
increases when censoring rate increases, that is when more censored data are excluded from 
the G analysis. In the extreme case of 40% of censoring at a fixed date and additive and 
dominant effect equal to .5, the power of G is less than 10%, when the power of C and W is 
more than 90%. G’ has a power 10 to 20% lower than C and W when there are 40% of 
censoring at fixed date or 20% of censoring at fixed date and an additive effect equal to .3.  
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Figure 2: QTL detection power with G, G’, W and C methods, as a function of simulated 
QTL effects for the five situations of censoring (QTL have an additive effect a and a 
dominant effect d). 
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             C= Cox model                             G= Gaussian model without censored observations 
             W= Weibull model                      G’= Gaussian model with censored observations 
 
 (b) Comparison of QTL location estimated with G, G’, W and C. 
Most estimated locations tend to be biased towards the centre of the chromosome. This 
observation is classical in interval mapping analysis [Walling et al., 2002]. For W and C, 
this bias and the accuracy of QTL location were barely influenced when censoring 
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increased. However, the bias decreased and the accuracy increased when QTL effects 
increased. The trend is slightly higher than previously for G’. Equivalent results were 
obtained with G when no censoring or censoring at random dates was applied. However, 
the latter method had an accuracy that decreased and a bias that increased with the 
proportion of censoring at a fixed date, particularly for situations where a dominant QTL 
effect was simulated.  
 
(c) Comparisons of additive and dominant QTL effects estimated with G, G’, W and C. 
With W and C, estimates of QTL effects were similar between the different situations of 
censoring. The estimates were only slightly biased or were unbiased. 
Comparing G (or G’) and W standardised estimates, the values were slightly under-
estimated for G and G’ when censoring was not applied or was at random dates. A different 
situation was found when censoring was at a fixed date: the G estimates of the effects were 
two or three times smaller than the W estimates. The accuracy was also considerably 
affected. G’ show more steady results. 
 
6. DISCUSSION CONCLUSION 
 
Considering that an adequate transformation is used in the parametric models (logarithmic 
transformation in G or G’ and translation transformation in W), the selection of the model 
did not appear critical when censoring was not applied or was at random at least in the 
example considered here. In this situation, the G, G’, W and C approaches obtained similar 
results: detection power, accuracy and bias of the estimates. When censoring at a fixed date 
was applied on the data, the situation changed. The G approach was strongly affected by 
censoring at a fixed date. This tendency increased when there was a dominant QTL effect. 
In the latter case, extreme data, which were censored, were the most informative ones for 
estimating QTL effects.  
In the analysed situations where censoring at a fixed date was applied (for example, due to 
the end of the study) a classical method, such as G, was not at all adequate. An alternative 
is to use a Gaussian model, assuming censored data as uncensored. In this case, results were 
close to but lower than C and W. 
Therefore, the use of QTL methods taking into account the characteristics of survival traits 
is very attractive for the study of such traits as genetic resistance to a disease and longevity 
in animal populations. This approach can be applied for example to detect QTL related with 
scrapie incubation time in sheep, the length of production life or time until mastitis 
occurrence in ruminants or the length of competitive life of sport horses. 
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