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Abstract

Fine mapping of QTL regions using linkage disequi-
librium and linkage analyses can be accomplished by
using appropriate multivariate normal linear mixed
models (Lund et al., 2003). We present extensions
of these models based on the analogous generalized
linear mixed models. In the new class of models in-
troduced, traits are assumed distributed according to
an "Exponential Dispersion Model” (Jgrgensen et al.,
1996), which includes classic families of distributions
such as the normal, gamma, binomial, negative bino-
mial and the Poisson. Here an interesting case is the
compound Poisson that is a family of positive val-
ued distributions that present positive probability of
taking the value zero. This can be used to represent
a QTL situated in a switch-regulated chromosomal
region or a QTL related to genes with very low pen-
etrance with their effects sometimes being below a
minimum action threshold.

1 Introduction

This text briefly discusses some ideas for ex-
tending statistical models currently used in
animal genetics to detect, locate and estimate
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the effect of Quantitative Trait Loci (QTL).
The models we have in mind are classically
based on the assumption that the data can
be reasonably described by a suitable multi-
variate normal distribution. We show that
these models can be naturally extended to
a richer class of parametric families of dis-
tributions: the exponential dispersion mod-
els. Since the exponential dispersion mod-
els contain many classic parametric families
of distributions, other than the normal dis-
tribution (and many less know, but still in-
teresting families), the proposed extension
might provide a flexible tool which can have a
strong impact in animal genetic applications.
The techniques we describe are known in the
statistical literature as ”Generalized Linear
Mixed Models” (GLIMM) (see Fahrmeir and
Tutz, 1994 and the references therein).

2 The genetic scenario

We chose the following scenario to illustrate
the use of the generalized linear mixed mod-
els in animal genetics. Consider a model for
fine mapping of QTL as in Lund et al. (2003),
where the QTL effects are treated as random
components with covariance matrix propor-
tional to the so called IBD matrix, i.e. a
matrix where each element is the probability
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that a pair of alleles is identical by descent,
given markers information and a putative
QTL position in the chromosome region in
play (for example calculated by the so called
”gene dropping” method). Here typically a
mixed model as described below is used. For
simplicity we assume that there is only one
QTL in the genome region studied and that
the trait of interest is one-dimensional. The
model can be written as

y=XpB+Zu+Wq-+e, (1)
where y is a (n x 1) vector of values of the
trait of interest, 3 is a (b x 1) vector with
b fixed effects for which we want to correct
for, X is a (n x b) design matrix for the fixed
effects, u is the (I x 1) vector of the [ poly-
genic effects, Z is the (n x [) matrix relating
individuals to the polygenic effects, ¢ is the
(1x1) QTL effect, W is the (nx 1) vector re-
lating individuals to the QTL effect and e is
the (n x 1) vector of residuals. It is assumed
that uw, ¢ and e are uncorrelated, multivari-
ate normally distributed as specified below:

u o~ N(O,ajA)
g ~ N(0,071BDy,)
e ~ N(0,0’EI) ,

—~~ o~
NN N )
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where [ is the n x n identity matrix, A is
the genetic additive relationship matrix and
IBD /s, is the IBD matrix for the putative
QTL, conditional on the marker data M and
the assumed QTL position on the chromo-
some.

Note that this is equivalent to assume that
the trait is multivariate normal distributed
with mean and covariance matrix given as be-
low,

()

The idea of the generalization we propose is
to replace the normal distribution in (5) by

yNN(Xﬂ, 02 A+ 02IBD ), + a,?f).

another distribution with similar properties
(an exponential dispersion model). This sub-
stitution is made in such a way that the mean
and the covariance structure described above
is kept unchanged, preserving in this way the
genetic interpretation of the model.

3 Exponential dispersion
models and generalized
linear mixed models

We introduce now the notion of exponential
dispersion models (EDM), which will be used
to generalize the model discussed in section
2. The following families of distributions are
examples of EDM: normal, gamma, inverse
gaussian, Poisson, binomial, negative bino-
mial, among many others. EDM are para-
metric families of distributions which have
many features in common with the family of
normal distributions. For example, the EDM
can be parametrized by the mean and the
variance. Other nice mathematical proper-
ties of the EDM, that are probably not vis-
ible to the reader, made it possible to de-
velop a detailed asymptotic theory of EDM
that resembles very much the well known in-
ference theory for the normal family of dis-
tributions. This was the basis of the exten-
sion of the classic linear models based on the
normal distribution to the so called ”gener-
alized linear models” in the 1980s. This new
statistical technique, not only put under the
same hat several known techniques as linear
regression, ANOVA, logistic and probit re-
gression, but also proposed several new mod-
els. A further extension occurred in the 1990s
by incorporating random effects in general-
ized linear models, generating what is now
called ”Generalized Linear Mixed Models”
(GLIMM). The main idea of this text is that
GLIMM provide the tools for extending many
models commonly used in animal genetics, al-
lowing the use of distributions other than the
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normal distribution.

Formally, a family of distributions for
which the density or probability function that
can be expressed in the following form:

p(y; 0, A) = exp [A{yf — b(0) }+c(y,A) ], (6)

for suitable functions b and ¢, is called an ex-
ponential dispersion model (Jorgensen, 1987).
Here 6 and A are parameters indexing the
family.

It is well known from the classic the-
ory of exponential dispersion models (see
Jorgensen, 1987 or Jorgensen, 1998) that the
expectation of a random variable Y with dis-
tribution given by (6) is

B(Y)=p=0(0). (7)
The function &' is called the mean value
mapping, since it connects the parameter
0 with the mean. The function V(u) =

V' {(t/)" (1)} is called the variance function,
because

= (0 = V() =0V (), (8)

where 02 = 1/X. The parameter o2 is called
the scale parameter. The variance function
plays an important role in the theory of expo-
nential dispersion models, not only because
it relates the mean to the variance, but also
because it completely characterizes the expo-
nential dispersion model. It is easy to shown
that the mean value mapping is injective.
Hence we can use the parameters p and o2
to parametrize the model instead of # and .
We use the notation

Y ~ ED(s,0%)

Var(Y)

2

(9)

to denote that the random variable Y is dis-
tributed according to an exponential disper-
sion model with mean p and scale parameter
2
o°.
Now we have all the ingredients to general-

ize the models described in section 2. Assume

3
that for the ith animal, for i = 1,...,n, we
have

yi ~ ED (v, 02) ) (10)

where y; is the value of the trait of interest

for the ith animal, 02 is a general scale pa-
rameter and the mean v; is given by

Here ED represents a given EDM. Xj; is the

ith row of X and u;, ¢; and e; are the ith el-

ement of the vectors u, g and e respectively.
Furthermore, it is assumed that the vectors
u, q and e are uncorrelated and multivari-
ate normal distributed with distribution de-
scribed by (2)-(4). Note that the model de-
scribed above is a GLIMM. Moreover, this
model has the same mean and a similar co-
variance structure of the classical model de-
fined in section 2, therefore we preserved the
genetic interpretation. However, changing
the EDM, ED, in (10) changes completely the
nature of the model.

4 Some examples

Here is a selected list of exponential disper-
sion models that are potentially interesting
for application in conjunction with the model
formulated above.

Gamma The gamma is a classic family of
continuous positive left skewed distributions
with probability density

p(y; @,2) = T(A) "'y exp(—@z + Alog @),

where y, A and ® > 0. It has a variance func-
tion given by V(i) = p? which means that
the variance is proportional to the square of
the mean, or equivalently the coefficient of
variation is constant. An example of practi-
cal use of the gamma distribution in animal
sciences is the modelling of pig growth (see
Labouriau et al., 2000).
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Inverse Gaussian The inverse gaussian is
a positive left skewed distribution with den-
sity of the form

A2
p(y;0,\) = (27@3)

;y)\+)\{9y+(—29)1/2}] :

exp

where y, A and 6 > 0. The inverse gaus-
sian family is an EDM with variance function
V(u) = p® and therefore is appropriate for
modelling data where the variance increases
rapidly with the mean.

It can be shown that the waiting time for
the first passage of a Brownian motion (with
drift) through a fixed barrier follows an in-
verse gaussian distribution. Since the Brow-
nian motion is a classic model for describing
the spatial distribution of molecules under
agitation, this distribution has been used to
model substance percolation through mem-
branes. An example in animal sciences is the
modelling of meat drip loss in chicken.

von Misses - Fisher This is a continu-
ous distribution taking values in the interval
[0, 27r] with probability distribution given by

p(y; s A) P {Acos(y — )},

1

2’7‘(’[0()\
where y and p are in the interval [0, 27,
A > 0 and I is the modified Bessel function.
The von Misses-Fisher distributions form an
EDM with the variance function V() = 1
(the same as the normal distribution, but
with domain (0, 27)) and is classically used to
model angles (e.g. wind directions in mete-
orology). In animal sciences, apart from the
uses for modelling some anatomic features,
one can think in characteristics that are nec-
essarily distributed in a limited region (from
below and from above), since it is possible

to re-scale such a variable to fit the interval
[0, 27].

Binomial The binomial distribution arises
when the data is obtained by counting
the number of successes in essays (called
Bernoully essays) with a fixed probability of
success. Classical models associated with this
distribution are logistic regression and probit
models. In animal sciences immediate uses
of this family of distribution can be find in
modelling occurrences of diseases and in fer-
tility studies, among many others that can be
easily found.

Poisson The Poisson is a classic discrete
distribution used to model counting data. It
plays a central role in modelling counting
data.

Negative Binomial The negative bino-
mial is a discrete distribution describing the
number of Bernoully essays performed until
obtaining the first success. This is a distribu-
tion proper for counting data, specially use-
ful when the Poisson cannot be used due to
data under- or over-dispersion, i.e. when the
data dispersion does not fit the dispersion one
would expect for a Poisson distributed data.

Compound Poisson The compound Pois-
son is a positive continuous distributions that
attributes a positive probability to the value
zero.  This distribution can be obtained
by the following construction. Let N and
X1, Xs, ... be asequence of independent ran-
dom variables with N Poisson distributed
and the X;s identically distributed according
to a gamma distribution. Define a new vari-
able Z by putting Z = 0 if N = 0 and if
N # 0 then putting
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The distribution of Z is a compound Poisson.
It can be shown that the compound Poisson
distributions are EDM with variance function
V() = pP for p between 1 and 2 (excluding
both).

The compound Poisson yields an interest-
ing model since it can be used to model data
with positive probability of a zero outcome,
but otherwise following a continuous distri-
bution taking positive values. This distribu-
tion has been used in insurance for modelling
the value of the yearly claim for an individual
insurance holder (here N would describe the
number of claims and the X;s would repre-
sent the values of the different claims). Other
classic applications of this family of distri-
butions is in meteorology for modelling the
daily amount of rain. In animal genetics we
can think on a trait which values are close
a detection lower bound (that some times is
detected and sometimes is not), or an addi-
tive effect on a trait that is switch regulated
by an environmental factor or a gene that is
not linked with the chromosomal region un-
der study.

5 Discussion

The main advantage of GLIMM is that it
makes it possible to vary the distribution
used without changing the regression struc-
ture of the model. In the case of the ge-
netic applications we illustrated here it is es-
sential to keep the linearity of the regression
function, preserving in this way the additiv-
ity of the random components. This is not
accomplished if for example the random vari-
able representing the trait of interest is trans-
formed to reach normality.

The usual claim on robustness of normal
distribution based methods against devia-
tions from the normality is only valid in some
examples and should be verified case by case.
Indeed, relatively simple calculations based
on the notion of Hampel’s influence function

(see Huber, 1981 and Hampel et al, 1986)
and derived classic measures of robustness
show that not all deviations from the nor-
mality are innocuous for the models we con-
sider here,even with very large samples (see
Labouriau, 1989). This is in accordance with
our simulation studies (not presented here).

The statistical inference for generalized lin-
ear mixed models (GLMM) is not as straight-
forward as it seems at first glance. There are
several proposals for statistical inference in
GLMM in the literature, some of them im-
plemented in standard software yet. How-
ever, general implementations might present
serious limitations when highly complex co-
variance structures are present in the model,
as it is the case in the applications we de-
scribed here. We are currently developing an
implementation based on iterated recursive
solutions of re-weighted normal mixed prob-
lems. The advantage of this method is that it
allows to use software specifically developed
for classic QTL detection in animal genetics,
as for example the highly optimized program
DMU (Madsen and Jensen, 2003).

There are no difficulties to extend to multi-
traits when all the traits follow the same ex-
ponential dispersion model. Essentially the
same technique (with the obvious adapta-
tions) can be used. However, specific meth-
ods and software are necessary to be devel-
oped if the traits of interest do not follow the
same probability law. We are currently in-
corporating this feature in a version of the
program DMU.

In conclusion, we presented a technique to
generate alternative models in animal genet-
ics that does not assume the trait of inter-
est to be normally distributed. Surely, many
other similar examples from different areas of
animal genetics can be generated using the
techniques presented. The use of these tech-
niques in animal genetics will depend on the
capacity to interact and on the imagination
of animal geneticists and statisticians.
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