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Abstract A new approach was developed to fine map a biallelic QTL using linkage disequilibrium ,
relating means and covariances of the QTL gametic values to the QTL allele effect and their frequencies
among the founders” marker haplotypes. This reduces the number of parameters compared to usual models.
MCMC was used to derive the conditional probabilities of inheriting maternal and paternal QTL alleles. A
residual maximum likelihood method was implemented to map the QTL, using a Newton-Raphson algorithm
to jointly estimate QTL position and effect of the QTL, QTL allele frequencies of the founders’ marker
haplotypes carrying the mutant QTL allele, and polygenic and residual variance components for each interval.
Simulated populations were analyzed to compare its ability to fine map a QTL to two others methods: one
based on identity by descent QTL covariances, and the other modeling independently the QTL effect means
and covariances of the QTL gametic values.

Introduction Combination of molecular tools with phenotypic data to better estimate genotypic values
for selection represents a recent challenge in quantitative genetics. For so-called marker assisted selection,
methodology has been developed (Abdel-Azim and Freeman, 2001; Fernando and Grossman, 1989; Fernando
and Totir, 2002; Goddard, 1992; van Arendonk et al., 1994; aWang et al., 1994; aWang et al., 1998 to exploit
the information on a locus having an effect on a quantitative trait 8(QTL). Most of those strategies used only
mendelian cosegregation between alleles at a marker locus linked to a QTL (marked QTL: MQTL) alleles,
at the family level (often called linkage equilibrium, LE). This implies modeling the dcovariances between
the genetic values due to the QTL. But to combine this information with preferential dassociations between
alleles at the population level (linkage disequilibrium, LD), one should also model athe expectation of those
values. There, authors usually suggested an independent model of each of those delements (see Meuwissen
and Goddard, 2001; Fernando and Totir 2003). For this contribution we developed a new strategy based on
Fernando and Grossman (1989) genetic model ato tie them together, to improve the forthcoming parameters
estimated for selection.

1 Integrating genotypic information in BLUP evaluation

Selection from a total population of n, based on information D is usually performed estimating their in-
dividual genotypic values ¢; (i=1,n). The conditional mean of the k selected is maximized, selecting the
candidates with the largest estimates §;=FE(g;/D) (Bulmer, 1980; Fernando and Gianola, 1986; Henderson,
1984).

BLUP EVALUATION: Traditionally, D consists of pedigree relationships and trait phenotypes P. Mul-
tivariate normal distributions are assumed for a vector y of trait phenotypes and a vector g of unobservable
genotypic values. Thus, the conditional mean of g is a linear function of y:

E(a/D) = pg + CV =y — py), (1)

awhere pig and py are the expected values of g and y conditionally on pedigree ainformation, C is the
covariance matrix between g and y and V is the covariance matrix of ay. Regardless the joint distribution
of g and y, this linear function of y gives the best linear predictor of g (Henderson, 1984).



alf y can be modeled as y = X3 + Zg* + e, where X and aZ are known incidence matrices, 3 is an
unknown vector of fixed effects, g* = g — F/(g) and e is a vector of residuals with null means and covariance
matrix R, then apy, = X3, C = AZ and V = Z’AZ+R, where dVar(g/P)=A. An efficient computation of
A~1is known from Henderson (1976). When the ug and iy are unknown and replaced by their generalized
least squares estimates, it agives the best linear unbiased predictor (BLUP) for g (Henderson, 1984). a

BLUP USING TRAIT AND MARKER DATA: a4D can also contain marker data M related to a marker
closely linked to a quantitative trait locus (MQTL) which &contributes to the genetic variability of the trait.
Under assumption of multivariate variability, equation &l is still a valid expression for the conditional mean
of g. pg, fty, aC and V are modified to account for this new information.

aTwo cases are to be considered when dealing with marker data. The marker locus is in linkage equilib-
rium (LE) with the QTL if dthe alleles for these two loci are independently distributed. Even if the two loci
are physically ilinked, knowing the marker genotype for a randomly sampled individual does not provide
information concerning its QTL 3dallele. However, if two relatives receive the same marker allele from a
common ancestor the likelihood they received athe same MQTL allele can be calculated. Those genotypes
for a linked marker are thus used to model the genetic dcovariances between relatives, but pg and py are
not modified by this information.

a aThe loci are in linkage disequilibrium (LD) if information on the marker genotypes provides infor-
mation on the QTL genotypes. dTypically, one of the marker allele will be preferentially associated with
one particular MQTL allele. In this case, 8E(g/P) # E(g/P,M). The marker genotypes are then dused to
model covariances between relatives, but also the expected genetic values.

1.1 Model under equilibrium (co-segregation)

In order to use the Henderson mixed model equations (HMME) for marker assisted BLUP, Fernando and
Grossman (1989) modeled g; = v™ + vf + u;, where v (v!) are the MQTL additive effects of the maternal
(paternal) alleles, and u; is the additive effect of the remaining trait loci. y is then modeled as

y=X3+Wv+Zu+e, (2)

awhere v is the vector of gametic effects at the QTL and W a known incidence matrix relating the
agametic effects to trait values. An efficient tabular method for the computation of the inverse dof the
conditional &covariance matrix X3! of v has been described by Fernando and Grossman (1989) and Wang
et al. d(1995). The efficient computation of the inverse of X, conditional covariance matrix of u and
aproportional to A, is known from the inverse of A. The HMME can then be solved to obtain estimates for
af, v and u. aTo estimate the variance components, we compute the likelihood of the y, using an automatic
adifferentiation strategy to obtain the first and second derivatives. A Newton-Raphson dalgorithm maximizes

the likelihood.

1.2 Combining with linkage disequilibrium

When modeling LD, we divide the MQTL effect between a genetic fixed effect o and the random effect
already described. Equation 2 is then changed in

y =X+ ZXga+ Wv + Zu + e, (3)

awith E(g/M) = Xga. X, is a matrix with one column of probabilities. & aThis communication
describes a new model to efliciently compute the expected values and covariances aof gametic effects. In
most of the previous works, each expected value is estimated dindependently from the corresponding variance
components. Our model ties the components together and with the expected dvalues. Parameters are then
meaningful and can possibly be used directly to select individuals based on the marker dalleles they carry.
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1.3 A new model for LD

We assume a biallelic MQTL with alleles Q1 and Q2 (mutant allele). a, the MQTL effect, corresponds to
half the difference between expected trait performances of homozygous individuals: 2a = pgag2 — HQ101-
For individual ¢, lets define p? = Pr(Q? = Q2/P,M), = m,p, the probability it inherited the mutant
allele from its dam (@ = m) or its sire (¢ = p) conditionally on the information. It is then easy to write
as E(g;/P,M) = a * (p* + p’) the conditional expectations of the gametic values, so that X, is
composed of elements (p/* + pf) for each individual, and @ = a. The conditional variances of the
gametic effects are written as Var(v?/P,M) = a? * p? * (1 - p?), x = m, p. Concerning the covariances
Cov(vm,v;?/P7 M), if j is not a descendant of ¢, we propose a tabular method similar to the method used in

Fernando and Grossman (1989) to compute Xy :

Cov(v]",v

/P,M) = Pr(Q]" < -Q7 /P,M)xCov(v],vj/P, M)+Pr(Q" < —QS/P,M)*COU(US,U?/P,M),
(4)
where v7 are the gametic effect for the dam d of i. Similarly, v{, the gametic effect for the sire s of 4,

is used to compute Cov(v?, v;«”/P7 M). Q7" < —Q7 represents the MQTL allele inherited from the maternal
haplotype of the dam. Pr(Q¥! <- Q%?/P,M), 1 = m, p, 22 = m, p, were called PDQ in Wang et al. (1995).
To compute probabilities p?, if j is not a descendant of 7, we propose a similar tabular method, using

the PDQ:

- if 7 is not a founder

&
J

P = PrQ < —QY/P.M) « pf + Pr(Q" < ~Q4/P. M)« )

- if ¢ is a founder, we arbitrarily label 1 and 2 each of the QTL alleles (the maternal or paternal origins
are now meaningless): for z = 1,2,

pi=>_ Pr(H} = Hy) *mp, (6)
h

where H} is the = haplotype of 7, H}, is the ht" haplotype available in the founder population, and 7,
is the frequency of the mutant allele in Hj, Pr(Q7 = Q2/H? = Hy). 7}, are parameters to estimate, which
will explicitly represent the linkage disequilibrium between the alleles in the population.

1.4 Practical implementation

The software was developed in C++, with an intensive access to the opportunities available through the
matvec library developed for scientific programming (Kachman and Fernando, 2002). It was used to solve
the HMME for the estimation of fixed and random effects. Automatic differentiation techniques were applied
to get the first and second derivatives of the likelihood, so that the Newton-Raphson algorithm can be used
to get variance components estimates.

Our practical implementation requires intensive use of Monte Carlo Markov Chain (MCMC) strategies
we can not extensively described in this paper, for the estimation of the PDQs and Pr(HY = Hy) (Pita et
al., 2004). An efficient strategy was implemented using algorithms such as the descent graph (Sobel and
Lange, 1996), to get the segregation indicators probabilities at each marker position before beginning the
mapping process. It makes it possible to compute the required probabilities for each position considered on
the linkage group during the mapping process with no additional MCMC computation.



1.5 Discussing the model

With our strategy, we reduce the number of parameters to estimate to ¢ and the mp, and tie together the
estimations of expected values and variance components for the gametic effects, which is supposed to be
easier to interpret. Compared to the strategies based on Meuwissen and Goddard (2001) computation of
the IBD matrix, where the covariance matrix combines LE and LD, our model disentangle them, easing the
interpretation and uses. Finally, the 7; can be used as criteria for selection of individuals, being indicators

of the QTL state of the individuals.

The major assumption concerns the biallelic state of the QTL. This might not be such a constraint if
we consider this hypothesis as "the mutant allele of interest versus the pool of the other alleles". How this
is pertinent when the alleles in the "pool of the other alleles" have different effects on the trait should be
tested.

2 Simulations and first results

First tests of this method were carried out on simulated data. Its mapping accuracy was compared to
methods based on Meuwissen and Goddard (2001) calculation of IBD matrix. In this preliminary work, the
segregation indicators are considered as known from the simulations.

2.1 Simulated designs

The population came from 100 generations of random mating, with effective size of 100. In the 100th
generation, 5 sires and 25 dams were picked up at random to create a working population. Five new
generations of 100 were simulated, each from mating of 5 sires and 25 dams. Marker genotypes and trait
values were known for the all 1030 individuals. On a 9 ¢M linkage group, we simulated 10 biallelic genetic
markers evenly spaced (intervals between genetic markers are numbered from 0 to 8) The simulated QTL
was in the middle of the linkage group (4th interval) or in the middle of the 2nd interval between two markers
(position 2.5 cM).

The phenotypic trait variance was 100, with two designs: 1) big QTL effect, equal variances from the
QTL (022) and the polygenic part (o2): 022 = 02 =30, 02 = 40; 2) small QTL effect: 022 = 2.5, 02 = 22.5,
o = 75.

2.2 Preliminary results and conclusions

Table I presents three criteria for the estimation of the mapping accuracy, based on the interval where the
maximum likelihood was found: the averaged, the standard deviation and the mean absolute difference with
the true parameter. They were estimated over 200 to 500 simulations depending on the cases.

Table I: Location of the maximum likelihood: averaged interval, standard deviation and mean absolute

difference with the true value. O'é = simulated QTL variance, Interval = interval truly simulated

a Interval 022 averaged interval standard deviation mean absolute difference
4 30.0 3.97 1.11 0.64
4 2.5 3.65 2.11 1.69
2 30.0 2.06 1.15 0.75

These first results show good accuracy, with a 1 ¢cM error in average, which locates the QTL in the true
interval in more than 80% for the more accurate case. Using the option based on Meuwissen and Goddard
computation of IBD matrix, we obtained a mean absolute difference of 0.4 for the first case described in



this table, which is better. A further look at the results showed troubles in the likelihood maximization: in
at least 40% of the simulations, the true maximum was not found, giving bad estimates for the parameters.
The mostly affected parameters were the effect and the ws, the variances being consistent and accurately
estimated.

Two different steps are considered to overcome these troubles: choose a new, more efficient, algorithm
to get good likelihood maxima, and add a step in the model for the means to avoid the direct estimation
of @ and the ws, and eventually make them easier to estimate. The first step begins to show interesting
resulting, with strategies based on Fisher information matrix. Once fixed, we plan comparisons of the models
to define the optimal conditions (haplotype sizes and population structures) when LD strategies should be
implemented. In an additional computational step, techniques to deal with multiple traits and missing data

will be made available
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