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ABSTRACT 
 
Detection of QTL in outbred half-sib family structure has mainly been based on interval 
mapping of single QTL on individual chromosomes. Cofactor analysis builds a single 
model by combing information from individual analyses. Cofactor analysis is expected to 
have higher power due to decrease in residual variance by taking into account variance 
explained by cofactors. This experiment was designed to study the power and tape I error 
in QTL mapping including cofactor with varying family size, heritability of the trait, QTL 
effect, map density and threshold level of the cofactor to test two hypotheses using 
simulated data. Hypothesis I: using cofactors increases the power of QTL mapping, 
especially when there is very low power of experiment and liberal threshold for cofactor. 
Hypothesis II: using cofactors increases type I error in QTL mapping. With family size of 
25, there was increase in power of identifying QTLs but also increase in false positive 
rate (FPR). When the power of the experiment was very high and with stringent 
threshold, cofactor analysis helps in reducing FPR. But in low power experiments the 
small increase in power was neutralized with increased false positives. Cofactor analysis 
was observed to increase type I error and increase was very high in low-power 
experiments and was worse for lower thresholds. 
 
 
Introduction 
 
The purpose of mapping quantitative trait loci (QTL) in livestock is to identify  
chromosomal regions affecting a quantitative trait and ultimately use existing variation in 
those chromosomal segments to select superior individuals from a population. A number 
of strategies have been proposed for QTL mapping (Lander and Botstein, 1989, Haley et 
al., 1994, Georges et al., 1995). Detection of QTL in outbred half-sib family structure has 
mainly been based on interval mapping of single QTL on individual chromosomes. These 
methods do not take possible QTL on other chromosomes into account. Jansen (1993, 
1994) and Zeng (1994) proposed methods to account for linked and unlinked QTL by 
fitting markers as cofactors. These methods were developed for inbred line cross 
experiments, and Jansen et al. (1996, 1998) and Kao et al. (1999) described methods for 
multiple QTL mapping in outcrossing species. Zeng (1994) reported that when cofactors 
are used a larger part of the breeding value of offsprings is accounted for, which results in 
reduction of the residual genetic variance and consequently higher power in QTL 
detection. 
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Cofactor analysis, as described by De Koning et al. (2001), builds a single model by 
combing information from individual analyses. Iterating over the linkage groups, the trait 
scores are sequentially adjusted for identified QTL in previous linkage groups. Cofactor 
analysis is expected to have higher power than individual chromosome analysis and 
especially in experiment with lower power. The argument put forward to explain the 
increase in number of QTL detected was partly the decrease in the residual variance by 
taking into account variance explained by the cofactors. This results in lowering the 
residual variance and an increase in the test statistic, which is a function of residual 
variance and thereby increasing the chance of detecting QTLs, which were not identified 
when cofactors were not considered. The increase can be substantial, as putative QTL 
become part of the complete model in which all cofactor effects are estimated jointly to 
give the best fit of the data. De Koning et al. (2001) reported, using cofactor analysis, the 
initial number of five suggestive QTL had increased to eight significant QTL. Bennewitz 
et al. (2004) also observed 39% increase (from 18 to 25) in the number of QTL detected 
when cofactors were included in the model in comparison to analysis without cofactor. 
As the number of QTL detected is substantially high in cofactor analysis, it is crucial to 
investigate if the expected type I error rate is preserved in cofactor analysis. A critical 
question in QTL mapping studies is how many of the statistically significant QTL 
represent real QTL rather than type I errors. Further the initial effect of cofactor is 
overestimated as it is analyzed individually along with adjusting a nonexistent QTL effect 
in homozygous families may increase false positive rate.  
 
Power to detect segregating QTL is a function of the number of individuals genotyped for 
the genetic markers and phenotyped for the quantitative traits, effect of segregating QTL, 
heritability of the trait, type I error allowed and marker density as well as residual 
variance (Van Der Beek et al., 1995; Weller, 2001). The threshold level for inclusion as 
cofactor will also influence the power as well as type I error. Therefore, this experiment 
was designed to study the power and tape I error in QTL mapping including cofactor with 
varying family size, heritability, QTL effect, map density and threshold level of the 
cofactor to test the following two hypotheses. Hypothesis I: using cofactors increases the 
power of QTL mapping, especially when there is very low power of experiment and 
liberal threshold for cofactor. Hypothesis II: using cofactors increases type I error in QTL 
mapping. 
 
Materials and Methods 
 
Simulation of data: The phenotypes and marker data were simulated for 15 sire families 
based on a half-sib design. The parameters for nine different scenarios are presented in 
Table 1. Marker alleles were sampled from 12 tetra-allelic markers with equal 
frequencies placed with a distance of 5 cM between loci. Except in the sparse-marker 
density scenario where 4 markers were placed at 20 cM intervals. QTL alleles were 
simulated on five chromosomes situated halfway between markers 7 and 8. Except in the 
sparse-marker density scenario where the QTL location was halfway between markers 3 
and 4. The QTL alleles were assumed to have equal frequency. Each QTL (scenarios 1-6) 
explained 10% of the genetic variance adding up to a total of 50% of the genetic variance 
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explained by five QTLs. 50% of the genetic variance was due to polygenes. In scenario 7  
(large QTL effect) two QTLs with large effect were simulated each explaining 25% of 
the total genetic variance. 50% of the genetic variance was due to polygenes. In scenario 
8 (uneven QTL effect I), five QTLs with diminishing effects were simulated, biggest 
13.3%, 2nd 11.7%, 3rd 10.0%, 4th 8.3% and 5th 6.7% such that the smallest QTL explained 
half the variance as the biggest QTL and thereby jointly explained half of the genetic 
variance. Similarly in 9th scenario (uneven QTL effect II), the five QTLs had 12, 11, 10, 
9, 8 percent of genetic variance, respectively, so that the smallest QTL explained two-
third of the variance of the biggest QTL. 
 
Table 1. Parameters for default and alternative simulated population 
 
Scenario 1 (Default population) 
No. of sires 
No. of sons per sire 
No. of chromosomes 
Length of each chromosome 
Markers  per chromosome 
Distance between adjacent markers (cM) 
No of chromosome with QTL 
Position of QTL 
QTL effect (individual) 
Phenotypic variance 
Additive effect of QTL allele  
Threshold level for cofactor  

 
15 
100 
15 
55 
12 
5  
5 
Halfway between markers 7 and 8 
10% of genetic variance 
100 
1 
0.05 

Scenario 2 (Medium family size) 
No. of sons per sire   

 
50 

Scenario 3 (Small family size) 
No. of sons per sire 

 
25 

Scenario 4 (Stringent threshold) 
Threshold level for cofactors 

 
0.01 

Scenario 5 (Liberal threshold) 
Threshold level for cofactors 

 
0.10 

Scenario 6(sparse-marker density) 
Length of the chromosome (cM) 
No. of markers 
Distance (cM) between adjacent markers) 
Position of QTL 

 
60 
4 
20 
Halfway between markers 3 and 4 

Scenario 7(large QTL effect) 
No of chromosomes with QTL 
QTL effect (individual) 

 
2 
25% of genetic variance 

Scenario 8 (uneven QTL effect I) 
Uneven QTL effect 

Smallest QTL explains half of the 
variance of what the biggest QTL does 

Scenario 9 (uneven QTL effect II) 
Uneven QTL effect 

Smallest QTL explains two-third of the 
variance of what the biggest QTL does 

Parameters for alternative populations are the same as the default except for those specified here 
 
The total phenotypic variance of the trait was assumed to be 100. Each of nine scenarios 
was simulated for two heritabilities, 0.90 and 0.30. The phenotypes were directly 
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simulated on sons. Therefore the heritability 0.90 resemblance a granddaughter design 
with a heritability about 0.30 for yield traits in the granddaughters. Similarly a heritability 
0.30 resemblance the low heritability of disease traits in a granddaughter design. Three 
family sizes were considered with 100, 50 and 25 sons per sire. There were three 
threshold levels for considering cofactors in the analysis: 0.05, 0.01 and 0.10.   
 
The cofactor analysis followed the procedure described by De Koning et al. (2001, 2004). 
First, all the chromosomes are analyzed individually to identify candidate regions by 
interval mapping. In the second stage, the candidate positions are identified based on 
significance levels. Candidate regions that exceed a given threshold are included as 
cofactor in the further analyses. Subsequently, all linkage groups are reanalyzed by 
interval mapping including the cofactors as covariate. If it reveals additional or candidate 
regions different from earlier round, the set of cofactors is modified and the effects re-
estimated. This step was repeated five times uniformly in each simulated data set. The 
number of significant QTL (P<0.05) were counted in the first round (without cofactor) 
and the fifth round and the locations of true QTLs was recorded. An identified QTL was 
considered to be a true positive when it was identified to reside on a chromosome where a 
QTL was simulated. Each scenario was replicated 100 times. Significance thresholds 
were determined empirically by 1000 permutations (Churchill and Doerge, 1994; Doerge 
and Churchill, 1996). For a type I error of 0.05, a sample of 1000 permutations is usually 
regarded as sufficient (Churchill and Doerge 1994, Piepho, 2001). A putative QTL was 
included as cofactor when it exceeded the given level of threshold fixed under the 
scenario. The expected theoretical power of each scenario was calculated as described by 
Van Der Beek et al. (1995). 
 
 
Results  
 
The results of QTL analysis with varying family size scenarios, each over 100 replicates, 
are presented in table 2. In cofactor analysis there was no change the in power to locate 
true QTLs in the large family size scenario but there was small increase in power in case 
of medium and small family size scenarios. However, in all the scenarios there were 
increases in false positive rate (FPR), which is realized type I error, except in large family 
with the high heritability situation, where it decreased by 5%. In cofactor analysis in 
small family size scenario, there were 13% and 21% increases in the number of true QTL 
identified in high- and low heritability conditions respectively but also 49% and 45% 
increase in FPR. Out of a total of 47 new significant positions found in cofactor analysis 
in small family size with high heritability, 24 were false positives. The theoretical power 
calculated (table 7) based on the population design and the parameters used to simulated 
the data was very close to the power observed for both individual and cofactor analysis in 
high heritability conditions and the observed power was little lower in low heritability 
conditions. The accuracy of QTL location estimates remains very similar in both 
individual and cofactor analysis (table 3). With small family size (25 sons/sire) the power 
of detection of true QTL increased in cofactor analysis in both high- and low heritability 
conditions.  
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Three levels of threshold: 0.01, 0.05 and 0.10 were considered for a chromosomal 
position to qualify as a cofactor. The effect of all these three thresholds on QTL detection 
was studied with high- and low-heritability situations. The number of true QTL detected 
and the FPR are presented in table 4. The stringent threshold (0.01) and liberal threshold 
(0.10) were compared with the default scenario i.e. threshold level of 0.05. It was 
observed that when the stringent threshold level was used, with the high-heritability there 
was 13% decrease in FDR in cofactor analysis, though the power to identify true QTL 
was the same as observed in individual analysis. However, in the case of small family 
size and high heritability there was a 34% increase in FPR. Out of 21 new locations, 
which became significant in this scenario with cofactor analysis, only six were true QTLs 
and rest false positives.  With low heritability and liberal threshold levels for cofactors at 
0.10, there was a 13% increase in power. However, FPR increased for both stringent- and 
liberal threshold scenarios. The biggest increase in FPR (41%) was in the case of a liberal 
threshold in this situation. The comparison of theoretical power estimates and observed 
power under individual and cofactor analysis is present in table 7. Out of three levels of 
threshold used the power was only increased in cofactor analysis in comparison to 
individual QTL mapping in low heritability and liberal threshold scenario. The accuracy 
of the estimates of QTL location was very similar in both individual and cofactor analysis 
(data not shown). 
 
The results of QTL analysis presented so far had five QTLs each explaining the same 
amount of variance. Two scenarios, 8 and 9, were simulated with ‘uneven QTL effect’ 
and QTL mapping results are presented in table 5. With high heritability these two 
‘uneven QTL effect’ scenarios and the default scenario had similar power for both 
individual and cofactor analysis. Similar to the default scenario of high heritability 
situation, there was 7% decrease in FPR in scenario 9 (uneven QTL effect II) scenario 
with cofactor analysis. However, 15% increase in FPR was observed in case of scenario 8 
(uneven QTL effect I) scenario. With low heritability, there was an increase in FPR in 
both scenarios 8 and 9. The observed powers in both cases were lower than in the default 
situation (equal QTL effect). No significant changes in QTL location estimates were 
observed when cofactors were included in the analysis in comparison to when they were 
not included (data not presented here). 
 
The scenario 6 was simulated with sparse marker density in comparison to the default 
scenario. Here the distance between markers was 20 cM in comparison to 5 cM marker 
interval in default case. These scenarios were simulated to study the effect of marker 
spacing on power of QTL with cofactor analysis and the results are presented in table 6. 
With high heritability, the power of sparse-marker scenario was 0.86 for individual 
analysis compared to 0.97 observed in the default situation. About 81 percent of QTLs 
were located in the correct marker intervals but this is due to very large maker interval in 
this scenario. There was also a 7% decrease in FPR when cofactors were added to the 
analysis. Similar to the default scenario the power did not change with cofactor analysis. 
With low heritability the power did not change with cofactor analysis but 16% increase in 
FPR was observed in this scenario. 
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Scenario 7 (large QTL) was simulated with two large QTLs each one explaining 25% of 
the genetic variance. As expected from theoretical expectations, the power to identify 
QTL was 100% with high heritability scenario and 0.91 with low heritability for both 
individual and cofactor analysis (table 6). However, with respect to FPR the two levels of 
heritability had opposite effects. With high heritability there was a 23% decrease in FPR 
and with low heritability there was a 34% increase in FPR.  
 
DISCUSSION 
 
In this paper we have compared the efficiency of QTL mapping using cofactor analysis 
with respect to that of individual analysis. There were small or no increase in power of 
QTL mapping with cofactor analysis, except in small family size and liberal threshold 
level for cofactors. For large family size and high heritability the power without cofactor 
was very high (0.97) leaving very small scope for further improvement in power. 
Similarly fixing a stringent threshold for cofactor did not improve the power in both high- 
and low heritability conditions. Similar results were observed with ‘uneven QTL effect’, 
sparse marker density and large QTL scenarios. The very small decreases in power for 
cofactor analysis in a few scenarios may be attributed to Monte Carlo variation. Zeng 
(1994) reported that when cofactors were used a larger part of the breeding value of 
offsprings was accounted for, which results in a reduction of the residual genetic variance 
and consequently higher power in QTL detection. De Koning et al. (2001) observed an 
increase in number of QTL detected in combined analysis, which was also explained as 
partly caused by the decrease in residual variance by taking into account variance that is 
explained by the cofactors. However, in the present study, there was no or very small 
increase in power in most of the scenarios except with small family size and a liberal 
threshold. Therefore, this study does not support the first hypothesis, i.e that cofactor 
analysis improves power.  
 
The false discovery rate was another parameter studied to compare QTL mapping with 
cofactor analysis and the results are presented in table 8. QTL mapping only identifies the 
chromosomal regions that are statistically significant at the level fixed for the experiment. 
A critical question in QTL mapping is how many of the QTL found are type I errors 
instead of true QTL. In the present study we have used a uniform threshold level for 
QTLs at 0.05. On an average 5% of chromosomes without QTL in the study will be 
called significant.  At this significant level we expect to get the FPR on average 50 in 
each scenario, as in 100 replications there were a total of thousand chromosomes without 
QTL. Expected FPR in large QTL was around 65. The reason of not fixing more stringent 
threshold levels for QTL was that we wanted to examine if QTL mapping with cofactors 
helps in reducing FPR. It was observed that FPR increased in the majority of the 
scenarios except some cases where power was very high. The biggest increase in FPR 
was observed in low power scenarios and was about 50% for small family scenario. The 
largest decrease in FPR was observed with QTL with large effect and high heritability 
where the power to detect QTL was 100%. With low heritability trait, the FPR increased 
in cofactor analysis in all the scenarios. Overall results for various scenario suggest the 
second hypothesis i.e. cofactor analysis increases FPR. 
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In the present study we have covered a wide range of scenarios with varying effects on 
power and FPR for the use of cofactors. The high heritability design has a good power to 
detect QTL (table 7). The ‘heritability’ of 0.90 in this 2-generation design resembles a 
granddaughter design where the EBVs of the sires are estimated with an accuracy of 0.90, 
which is achieved for most traits that are routinely measured in progeny testing of AI 
bulls in dairy cattle. The power of the low heritability design is very modest (table 7) and 
in practice this would not be a fruitful design for QTL detection. The simulations show 
that using cofactors will not improve the analyses of designs with low a priori power to 
detect QTL.  To what degree our simulations mimic ‘real’ experiments is unclear but 
because of the large number of scenarios some of the conclusions are expected to be of 
general relevance. 
 
The issue of appropriate threshold level for a candidate region to be included as a 
cofactor was examined in the present study. However in the liberal scenario there were 
increases in both power and FPR. Though the power may increase with less stringent 
threshold but often new QTL detected are false positives. De Koning et al. (2001) used 
the chromosome-wise threshold level of 5%. Jansen (1994) and Zeng (1994) suggested 
backward elimination and stepwise regression respectively, to select the cofactors using 
an ad hoc threshold based on nominal significance level. In practice it is advisable to use 
different thresholds for picking cofactors and for declaring a significant QTL.  A cofactor 
could be selected at f.i. the 5% chromosome-wide level, while for declaring that cofactor 
as a QTL, genome-wide thresholds would be applied (de Koning et al. 2004)  
 
In the present study the power of detecting QTL was lower when the marker spacing was 
20 cM in comparison to marker spacing at 5 cM interval. Similarly, Van Der Beek et al. 
(1995) showed that power is a function of the distance between markers. Darvasi et al. 
(1993) performed a simulation study on the effect of marker density and concluded that 
with respect to the power that reducing marker spacing below 10 cM or 20 cM does not 
provide additional gains, regardless of the population size and gene effect. Piepho (2000) 
observed that the power of detection of QTL is stable between spacing of 0 and 20 cM.  
 
Overall there was no or little increase in power in cofactor analysis. The cofactor methods 
showed small advantage in terms of reducing FPR in scenarios with high heritability 
because most of the genetic variance can be controlled and removed from the residual 
variance in the model. For traits with low heritability, the gain of fitting cofactors in the 
model in the way of detecting more QTLs was neutralized by an increase in false positive 
rate. There was a reduction in FPR in five scenarios but all of them in high heritability 
situation. Though the power was lower with larger marker intervals in comparison to a 
dense map but the power of detecting QTL was similar with both individual and cofactor 
analysis. Though there was decrease in FPR with large QTL effect in high heritability 
situation with cofactor analysis but it was opposite in low heritability situation. Hence, 
this study could not establish any generalized advantage of cofactor analysis for QTL 
mapping. 
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Table 2. Number of QTL simulated and identified with different family size  
 

Individual Analysis Cofactor Analysis Change 
in true 
QTL  

Change 
in FPR  

h2 Family 
size 

True False Total True False Total (%) (%) 
Large  483 59 542 482 56 538 -0.21 -5.08 
Medium  356 55 411 383 60 443 7.58 9.09 

High  

Small  174 49 223 197 73 270 13.22 48.98 
Large  211 57 268 211 63 274 0.0 10.53 
Medium  93 56 149 94 66 160 1.08 17.86 

Low 

Small  57 51 108 69 74 143 21.05 45.10 
Total 500 QTLs were simulated 
 
Table 3. Accuracy in QTL location estimation with different family size 
 
h2 Family 

size 
Individual Analysis Cofactor Analysis 

  A 0 ±1 ±2 ±3 >3 A 0 ±1 ±2 ±3 >3 
Large  96.6 51.1 37.7 5.6 3.7 1.9 96.4 53.7 34.0 7.1 3.3 1.9 
Medium  71.2 35.4 37.4 11.8 9.3 6.2 76.6 32.6 39.2 14.4 7.1 6.8 

High  

Small  34.8 24.1 32.8 17.2 15.5 10.3 39.4 26.4 26.9 18.3 17.8 10.7 
Large  42.2 15.2 32.2 18.5 17.5 16.6 42.2 16.1 34.6 15.2 18.0 16.1 
Medium  18.6 20.4 22.6 21.5 21.5 14.0 18.8 20.2 20.2 26.6 18.1 14.9 

Low  

Small  11.4 7.0 19.3 21.1 28.1 24.6 13.8 7.2 26.1 15.9 24.6 26.1 
A – Percentage of simulated QTL identified; Proportion (%) of QTL identified in the correct,  ±1,  ±2, ±3, 
and beyond 3 maker interval 
 
 
Table 4. Number of QTL simulated and identified with different threshold levels for 
cofactors 
 

Individual Analysis Cofactor Analysis Change in 
true QTL  

Change 
in FPR  

h2 Threshold 
level for 
cofactor True False Total True False Total (%) (%) 

0.05 483 59 542 482 56 538 -0.21 -5.08 
0.01 470 61 531 472 53 525 0.43 -13.11 

High  

0.10 481 44 525 487 59 546 1.25 34.09 
0.05 211 57 268 211 63 274 0.0 10.53 
0.01 201 51 252 198 58 256 -1.49 13.74 

Low  

0.10 224 51 275 255 72 327 13.84 41.18 
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Table 5. Number of QTL simulated and identified with uneven QTL effect 
 

Individual Analysis Cofactor Analysis Change 
in true 
QTL  

Change 
in FPR  

h2 Uneven QTL 
effect 

True False Total True False Total (%) (%) 
Default (high- h2) 483 59 542 482 56 538 -0.21 -5.08 
Half  (8-I) 479 46 525 484 53 537 1.04 15.22 

High  

Two-third (8-II) 473 57 530 475 53 528 0.42 -7.02 
Default (low- h2) 211 57 268 211 63 274 0.0 10.53 
Half  (8-I) 179 52 231 178 62 240 -0.56 19.23 

Low  

Two-third (8-II) 191 49 240 195 60 255 2.09 22.45 
 
 
Table 6. Number of QTL simulated and identified with sparse marker and large QTL 
effect 
 

Individual Analysis Cofactor Analysis Change 
in true 
QTL  

Change 
in FPR 

h2 Marker density and 
large QTL 

True False Total True False Total (%) (%) 
Default (high- h2) 483 59 542 482 56 538 -0.21 -5.08 
Marker interval 20cM 430 56 486 428 52 480 -0.47 -7.14 

High  

Large QTL* 200 71 271 200 55 255 0.0 -22.54 
Default (low- h2) 211 57 268 211 63 274 0.0 10.53 
Marker interval 20cM 139 57 196 132 66 198 -5.04 15.79 

Low  

Large QTL* 181 56 237 181 75 256 0.0 33.93 
* Total 200 QTLs were simulated 
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Table 7. Comparison of theoretical expected powers based on experimental designs and 
empirical powers with and without cofactor analysis. 
 

Scenarios High h2 Low h2

 Expected  Realized Expected Realized 
  Individual 

Analysis 
Cofactor 
Analysis 

 Individual 
Analysis 

Cofactor 
Analysis 

Scenario 1 
Default population 

0.98 0.97 0.96 0.53 0.42 0.42 

Scenario 2 
Medium family size 

0.81 0.71 0.77 0.26 0.19 0.19 

Scenario 3 
Small family size 

0.47 0.35 0.39 0.14 0.11 0.14 

Scenario 4 
Stringent threshold 

0.98 0.94 0.94 0.53 0.40 0.40 

Scenario 5 
Liberal threshold 

0.98 0.96 0.97 0.53 0.45 0.51 

Scenario 6 
Sparse-marker density 

0.96 0.86 0.86 0.45 0.28 0.26 

Scenario 7 
Large QTL effect 

1.00 1.00 1.00 0.92 0.91 0.91 

Scenario 8 
Uneven QTL effect-I 

0.97 0.96 0.97 0.46 0.36 0.36 

Scenario 9 
Uneven QTL effect-II 

0.97 0.95 0.95 0.49 0.38 0.39 

 
Table 8. Comparison of expected FPR and observed FPR individual and cofactor 
analysis. 
 

Scenarios High h2 Low h2

 Expected  Realized Expected Realized 
  Individual 

Analysis 
Cofactor 
Analysis 

 Individual 
Analysis 

Cofactor 
Analysis 

Scenario 1 
Default population 

50 59 56 50 57 63 

Scenario 2 
Medium family size 

50 55 60 50 56 66 

Scenario 3 
Small family size 

50 49 73 50 51 74 

Scenario 4 
Stringent threshold 

50 61 53 50 51 58 

Scenario 5 
Liberal threshold 

50 44 59 50 51 72 

Scenario 6 
Sparse-marker density 

50 56 52 50 57 66 

Scenario 7 
Large QTL effect 

65 71 55 65 56 75 

Scenario 8 
Uneven QTL effect-I 

50 46 53 50 52 62 

Scenario 9 
Uneven QTL effect-II 

50 57 53 50 49 60 
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