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ABSTRACT

Molecular markers can be broadly classified into two types: I) those that have a direct
effect on a trait, and II) those that do not have a direct effect on any trait but are
linked to a trait locus. A marker of type I can be incorporated into genetic evaluation
by including it as a fixed effect in the model used for genetic evaluation. Even in this
ideal situation, genetic evaluation may not be straightforward when marker genotypes
are missing on a significant proportion of the pedigree. Markers of type II can be
further classified into two types: IIa) markers that are in linkage disequilibrium with
the trait locus, and IIb) markers that are in linkage equilibrium with the trait locus.
When disequilibrium is strong, a marker of type IIa can be treated as a type I marker.
If disequilibrium between the marker and the trait locus is weak, the marker will have
little effect on the trait mean. When the marker locus and trait locus are in linkage
equilibrium, the allele states at the two loci are independent, and thus, the maker has
no effect on the trait means. But, even in this situation, marker information can be
used to model trait covariances by treating marker within animal as a random effect.
Strategies for including these types of markers in genetic evaluation will be discussed

1 Introduction

Due to advances in molecular genetics, increasing amounts of molecular information
are becoming available for genetic evaluation. The molecular information considered
here consists of molecular genotypes at polymorphic loci. These loci can be broadly
classified into two types: I) those that have a direct effect on a trait, and II) those that
do not have a direct effect on any trait but are linked to a trait locus. Loci of type
II can be further classified into two types: IIa) loci that are in linkage disequilibrium
with the trait locus, and IIb) loci that are in linkage equilibrium with the trait locus.
The focus of this paper is on the principles underlying mixed linear model methods
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that incorporate these types of loci into genetic evaluation. It can be shown that two
types of linkage information can contribute to genetic evaluation or linkage analysis.
Methodology for genetic evaluation that combines these two types of information is
presented here. The application of this methodology to incorporate loci of types I,
IIa and IIb into genetic evaluation is discussed. For simplicity, theory is presented
for incorporating genotypes at a single locus into genetic evaluation.

2 Two Types of Linkage Information

2.1 Disequilibrium Information

Consider a marker locus A with alleles A1 and A2 that is linked to a trait locus Q
with alleles Q1 and Q2. Let SA be a variable that specifies if the allele at the A
locus on some haplotype is A1 or A2. Similarly, let SQ be a variable that specifies
if the allele at the Q locus on this haplotype is Q1 or Q2. We will refer to SA and
SQ as allele state indicators. Now, for a randomly sampled haplotype, if the allele
state indicators SA and SQ are independent, then A and Q loci are said to be in
gametic phase equilibrium (or linkage equilibrium); on the other hand, if SA and SQ

are dependent, A and Q are said to be in gametic phase disequilibrium (or linkage
disequilibrium) [1].

Even when allele states at Q cannot be observed, inferences on the joint distribution
between SA and SQ can be made by computing trait means for each of the genotypes
at the A locus. Significant differences between these means implies that the A locus is
in disequilibrium with a locus Q that has an effect on the trait. This disequilibrium is
usually taken as evidence for linkage between loci A and Q [7], and this information
for linkage that comes from the dependence between allele state indicators will be
referred to as disequilibrium information. However, even when A and Q are linked, it
is it is possible that the loci are in equilibrium [1]. Thus, disequilibrium information
may not provide evidence for linkage even when loci are linked. Fortunately, a second
type of information can provide evidence of linkage between loci even when they are
in gametic phase equilibrium.

2.2 Cosegregation Information

Any allele on a haplotype either originates in the maternal or the paternal allele of
the parent that transmitted the haplotype. Let OA denote the grand-maternal or
grand-paternal origin of the allele at locus A on some haplotype. Similarly, let OQ
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denote the grand-maternal or grand-paternal origin of the allele at locus Q on the
same haplotype. We will refer to OA and OQ as allele origin indicators. If loci A
and Q are linked, regardless of the joint distribution of allele state indicators, OA

and OQ will be dependent, and this dependence is known as cosegregation. On the
other hand, if loci A and Q are not linked, OA and OQ will be independent, and this
independence is known as independent segregation.

Even when alleles at the Q locus cannot be observed, as explained below, inferences on
the joint distribution between OA and OQ can be made by computing trait covariances
between relatives. Consider a sire with genotype A1A2 at the A locus. Suppose the
offspring of this sire can be classified into two groups: group I with offspring that
received their sire’s A1 allele, and group II with offspring that received their sires A2

allele. If A and Q loci are tightly linked, then, with high probability, offspring in
marker group I will receive their sire’s Q allele that is “linked” to the sires A1 allele,
and those in marker group II will receive their sire’s other Q allele that is “linked” to
the sires A2 allele. Thus, covariances between trait values of offspring within either
group I or II would be greater than covariances across the marker groups. On the
other hand, if A and Q are not linked, the within group covariances will be identical to
the across group covariances. Thus, the difference between within group and between
group covariances can be used to infer linkage between A and Q. This information
for linkage that comes from the dependence between allele origin indicators will be
referred to as cosegregation information.

3 Genetic Evaluation

Now, we will see how disequilibrium information and cosegregation information from
molecular genotypes are combined with pedigree and phenotypic information for ge-
netic evaluation using mixed linear model methods. We will assume additive gene
action for the quantitative trait locus linked to the marker (MQTL) and also for the
other loci affecting the trait (RQTL). As usual, the RQTL will be assumed to be
unlinked to the markers and the MQTL. Further, we will assume in this presentation
that only two alleles, Q1 and Q2, are segregating at the MQTL. This last assump-
tion is not necessary for the mixed linear model approach, but it does provide some
simplifications that are worth observing.

3.1 Genotypes at Linked Locus in Disequilibrium

Genetic evaluation with genotypes at a marker locus that is linked and has an arbi-
trary level of gametic phase disequilibrium with the MQTL is considered here. This
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type of analysis was first proposed by Goddard [4] and was further developed by Wang
et al. [11], when disequilibrium was entirely due to crossbreeding and the marker locus
was assumed to be in equilibrium with the MQTL in the purebreeds. Methodology to
accommodate purebreeds with disequilibrium was considered by Fernando and Totir
[3].

A marker locus with an arbitrary level of disequilibrium includes genotypes of types I,
IIa and IIb. When disequilibrium is complete, i.e., when the MQTL genotype is known
with certainty conditional on the observed genotype at the linked marker locus, type
IIa genotypes are indistinguishable from type I genotypes. This special case, however,
will be considered separately as there are some noteworthy simplifications.

Suppose genotypes at the MQTL were observed. Then, trait phenotypic values can
be modeled as

y = Xβ + ZQµ + Zu + e, (1)

where y is the vector of trait phenotypic values, β is a vector of non-genetic fixed
effects, µ has a single element, which is the additive effect of a Q2 allele, u is the
vector of additive effects of the RQTL, e is a vector of residuals, and X, Q and Z
are known incidence matrices. Given data from p animals, the incidence matrix Q
will have p rows and a single column, with row i of Q containing the number of Q2

alleles for animal i.

Now, for the situation considered here, the genotypes at the MQTL are not observed,
and genotypes are available only at a linked locus. Thus, Q is an unobservable
random matrix. The usual mixed model methodology cannot accommodate models
with unobservable incidence matrices. However, we can write

a = Qµ − E(Q|M)µ, (2)

where M denotes the observed genotypic information, and E(Q|M) the conditional
expectation of Q

¯
given M . In the following, we will denote this conditional expecta-

tion by Q̂. In (2), a is a random vector with null mean, and now the model for the
trait phenotypic values can be written as

y = Xβ + ZQ̂µ + Za + Zu + e. (3)

Provided we can compute Q̂, all the incidence matrices in this model are known, and
the mixed model equations for this model can be setup provided we can compute
the inverse of the covariance matrix for each of the random vectors a and u. The
covariance matrix for u is proportional to the additive relationship matrix. The
inverse of the additive relationship matrix is sparse, and thus it can be computed
efficiently [5]. On the other hand, the inverse of the covariance matrix for a is not
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sparse, and thus its computation is not efficient. However, Za can be written as Wv,
where

ai = vm
i + vp

i ,

vm
i and vp

i are the additive effects of the maternal and paternal MQTL alleles of
individual i, and W is a known incidence matrix relating v to y. It can be shown
that the covariance matrix, Σv, for v can be calculated using a simple recursive
formula that also leads to an efficient algorithm to invert Σv [3]. The model for trait
phenotypic values now becomes

y = Xβ + ZQ̂µ + Wv + Zu + e. (4)

When the marker locus is in equilibrium with the MQTL, as we will see in detail
later, each row of Q̂ will be equal to a constant. Thus, ZQ̂µ can be dropped from
the model. In this situation, only cosegregation information will contribute to the
analysis through the modeling of covariances among MQTL effects. When disequi-
librium is complete and all marker genotypes are observed, E(Q|M) = Q. Thus, in
this situation, v is null, and after utilizing the disequilibrium information, cosegrega-
tion information does not contribute to the analysis. When disequilibrium is partial,
E(Q|M) 6= Q, and v is not null. In this situation, disequilibrium information will
contribute to the analysis through the model for the mean of MQTL effects, and
cosegregation information will contribute to the analysis through the model for co-
variances between MQTL effects. These points should become clearer as we describe,
in the following sections, how to compute Q̂ and the covariance matrix for v.

3.1.1 Mean of MQTL additive genetic values

Recall that the mean of MQTL effects is Q̂µ, where row i of Q has the number of Q2

alleles for animal i. Thus, the ith element of Q is the sum of two Bernoulli variables
and has expected value:

Q̂i = pm
i + pp

i , (5)

where
pm

i = Pr(OQ(m, i) = Q2|M), pp
i = Pr(OQ(p, i) = Q2|M),

and OQ(m, i) is the maternal MQTL allele state and OQ(p, i) the paternal MQTL
allele state of individual i. Let FQ(m, i) = Aj denote the event that the maternal
MQTL allele of individual i originated in a founder haplotype with marker allele Aj.
Then, pm

i can be written as

pm
i =

∑
j

Pr(FQ(m, i) = Aj|M)πj, (6)
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where πj is the conditional probability that a founder haplotype with marker allele
Aj has MQTL allele Q2. Similarly, pp

i can be written as

pp
i =

∑
j

Pr(FQ(p, i) = Aj|M)πj. (7)

Markov chain Monte Carlo (MCMC) methods can be used to compute the founder
haplotype origin probabilities: Pr(FQ(m, i) = Aj|M) and Pr(FQ(p, i) = Aj|M) [8].

The πj in (6) and (7) are the disequilibrium parameters. Thus, under equilibrium,
where allele states SA and SQ are independent, the conditional probability of a Q2

allele on a founder haplotype does not dependent on the marker allele on that hap-
lotype, and so π1 = π2 = . . . = Pr(Q2). It follows that pm

i = pp
i = Pr(Q2) for all i

because ∑
j

Pr(FQ(m, i) = Aj|M) =
∑

j

Pr(FQ(p, i) = Aj|M) = 1,

for all i. However, under disequilibrium, where allele states SA and SQ are not

independent, the πj are not all equal and it follows that Q̂ is not a vector of constants.
Thus, disequilibrium information contributes to modeling the mean of MQTL effects.

3.1.2 Covariance of MQTL additive genetic values

The additive genetic value vm
i is a Bernoulli variable times µ. Thus, the variance of

vm
i is

Var(vm
i ) = µ2pm

i (1 − pm
i ), (8)

and similarly, the variance of vp
i is

Var(vp
i ) = µ2pp

i (1 − pp
i ). (9)

Under equilibrium, pm
i = pp

i = Pr(Q2) and thus the variance of MQTL additive
genetic values does not depend on the marker genotypes. When disequilibrium is
present, however, pm

i and pp
i and thus the variance of MQTL additive genetic values

depend on the marker genotypes.

To compute the off-diagonal elements of Σv, we use the same formula that is used
under equilibrium:

Cov(vm
i , vp

k|M) = Pr(OQ(m, i) = m|M)Cov(vm
d , vp

k|M)

+ Pr(OQ(m, i) = p|M)Cov(vp
d, v

p
k|M),

(10)

where OQ(m, i) = m, for example, is the event that the maternal MQTL allele of in-
dividual i originates in its dam’s maternal allele [3]. Due to cosegregation of marker
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and MQTL alleles, the conditional allele origin probabilities, Pr(OQ(m, i) = m|M)
and Pr(OQ(m, i) = p|M) depend on marker genotypes, regardless of the level of dis-
equilibrium between the marker locus and the MQTL. Thus, (10) shows that coseg-
regation information contributes to modeling covariances between MQTL additive
genetic values.

The advantage of using (10) to compute Σv is that this leads to an efficient algorithm
to invert this covariance matrix [3], and without such an algorithm, genetic evaluation
with large pedigrees would not be possible. The disadvantage of using (10) is that it
leads to an approximation of the covariance matrix and its inverse when marker data
are not complete. Complete marker data in this situation are the ordered genotypes
at the marker locus. Wang et al. [12] gave a recursive formula that gives exact
results with unordered genotypes at a single locus. Recently, Thallman et al. [9] have
developed a recursive formula that gives exact results with missing genotypes for a
pedigree with loops.

3.2 Genotypes at Trait Locus

Here we consider genetic evaluation when genotypes at a trait locus are available.
As mentioned earlier these genotypes are indistinguishable from type IIa genotypes
when disequilibrium is complete. In this case, when genotypes are available for every
animal in the pedigree, the mixed linear model reduces to

y = Xβ + ZQµ + Zu + e, (11)

where the incidence matrix Q is observed. However, if some genotypes are missing,
those elements of Q corresponding to the missing genotypes are not observed. In this
case, the unobserved elements of Q can be replaced by their conditional expectations
given the observed genotypes. If the MQTL has a large effect on the trait, for each
individual i with a missing trait genotype, the deviation ai of the MQTL genotypic
value from its conditional expectation could be included in the model. So, when some
genotypes are missing, the model becomes

y = Xβ + ZQ̂µ + Zaã + Zu + e, (12)

where ã is the vector with MQTL “deviations” for animals with missing trait geno-
types, and Za is a known incidence matrix relating the elements of ã to y. As ã is
a vector of deviations, it will have a null mean. The variance of ai can be calculated
as

Var(ai) = µ2[pm
i (1 − pm

i ) + pp
i (1 − pp

i )], (13)

where, even for large pedigrees, the probabilities pm
i and pp

i can be calculated by
iterative peeling [10, 2], conditional on the observed trait genotypes. The covariance
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between any pair of elements ai and aj can be computed recursively as follows. Given
any pair of individuals, one of them is not a descendant of the other. Suppose that j
is not a descendant of i. Then, the covariance between ai and aj can be written as

Cov(ai, aj) =
1

2
[Cov(adi

, aj) + Cov(asi
, aj)], (14)

where di is the dam and si the sire of i. If i is a founder, the two covariances on the
right hand side of (14) are null. Further, if the dam of i is genotyped, adi

would be
null, adi

would not be included in ã, and Cov(adi
, aj) = 0; similarly, if the sire of i is

genotyped, asi
would be null, asi

would not be included in ã, and Cov(asi
, aj) = 0.

The recursive formula (14) used here is identical to that used to compute the additive
covariance matrix. Thus, the inverse of the covariance matrix for ã can also be
computed efficiently.

4 Discussion

In this paper we have discussed how molecular information can be incorporated into
genetic evaluation. In this presentation we considered genotype information at a
single locus. The principles presented here can also be used to incorporate genotype
information at several linked loci. In this situation, the founder haplotype origin
probabilities in equations (6) and (7), and the grand-parental origin probabilities in
equation (10) are computed conditional on the observed genotypes at all the linked
loci. In this case, the πj disequilibrium parameters can be defined conditional on the
allele states of all the marker loci. If several marker loci are used, the number of
disequilibrium parameters may be too many to estimate accurately. One alternative
is to define the disequilibrium parameters conditional on the allele states of the two
marker loci flanking the MQTL.

Meuwissen and Goddard [6] have used a different approach to combine disequilibrium
information and cosegregation information. Their approach has the advantage of
a single disequilibrium parameter, regardless of the number of markers. On the
other hand, while the method presented here does not make any assumptions on
how disequilibrium was generated, their approach assumes that disequilibrium is due
to a mutation a specified number of generations ago. Further, for their method it is
necessary to specify the effective size of the population before pedigree data became
available.
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