Across country evaluation of clinical mastitis and somatic cell count by multitrait model

Enyew Negussie*, Minna Koivula and Esa Mäntysaari MTT Agrifood Research, Jokioinen, Finland *enyew.negussie@mtt.fi

Background

- Rapid genetic progress in milk yield
- Increased interest in udder health
- Strategies vary across countries

Countries participated in interbull evaluation for udder health

Evaluation	No. of countries			
Year	SCC	CM		
August 2001	12	4		
August 2002	18	4		
August 2003	18	4		
August 2004	20	4		

source: http://www-interbull.slu.se/udder/

Nordic countries

National recording for health data in dairy

Clinical mastitis in breeding programs

Genetic link - Joint evaluation

Nordic cooperation

Joint testing and evaluation

- joint testing and use of AI bulls
- accurate comparison and selection
- efficient utilisation of resources

SCC - CM

- Reasons for culling single trait model biased
- Indicators of different aspects of udder health
- CM info. from correlated trait important
- Breeding goal- subsequent lactations needed

Objective

Test multitrait model for joint genetic evaluation of bulls for udder health traits

Source of data

Finland and Sweden

Trait definition

SCC

Lactation mean of log transformed (log_escc) test-day somatic cell count (in 1000/ml)

CM

```
"0" / "1"
```

Veterinary records/culling due to udder diseases within 7days before and 150 days after calving

Description of the data set

	Finland	Sweden	Joint
Cows (mill.)	1,1	1,0	2,2
Lactations	1-3	1-3	1-3
Records (mill.)	2,2	2,1	4,4
Bulls in pedigree - With daughters - Total	6060	4358	10,381 11,280

Mean SCC and CM by lactation

Mean	Finland	Sweden		
SCC				
scc1	4.37(0.9)	3.97(0.9)		
scc2	4.38(0.9)	4.14(1.0)		
scc3	4.39(0.9)	4.43(1.1)		
CM (%)				
cm1	8.2	7.3		
cm2	8.6	8.8		
cm3	10.6	11.2		

Joint across country model

MT-MP sire model (scc+cm)

Fixed effects Calv age x Parity x Country

HY5

YM x Country

Random effects

HY

Sire

Residual

Heritability and genetic correlations of SCC and CM in the 1st, 2nd and 3rd lactations

Traits	scc1	scc2	scc3	cm1	cm2	cm3
scc1	0.137					
scc2	0.899	0.122				
scc3	0.811	0.981	0.119			
cm1	0.721	0.664	0.577	0.023		
cm2	0.654	0.704	0.681	0.868	0.020	
cm3	0.577	0.696	0.687	0.759	0.955	0.022

Results

I. Univariate vs. Multivariate

Correlation between EBV's from joint multitrait and joint univariate model

			Traits						
		SCC			CM				
Group of bulls	No. Bulls	scc1	scc2	scc3	cm1	cm2	cm3		
Old (1991- 93)	660	0.998	0.998	0.998	0.924	0.924	0.906		
Young (1995-97)	330	0.996	0.996	0.998	0.864	0.865	0.867		

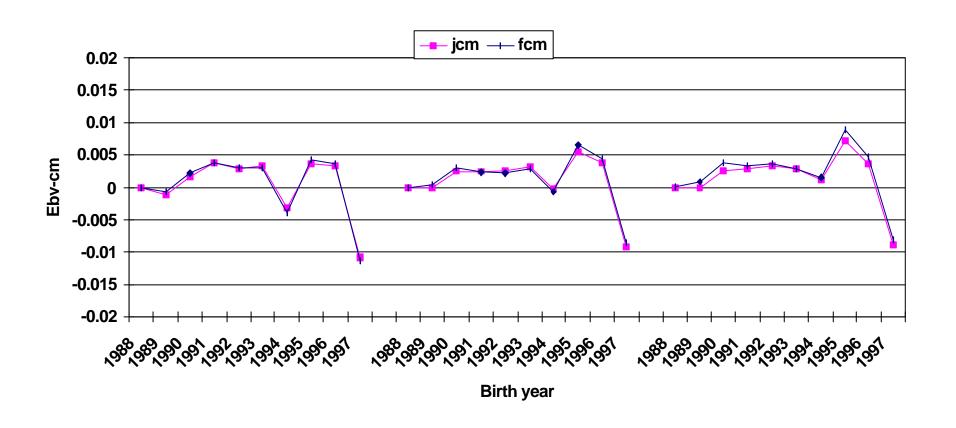
Ranking top bulls: No. bulls common with the univariate model

Traits	No. of common bulls in the top 20
SCC1	19
SCC2	16
SCC3	18
CM1	9
CM2	5
CM3	7

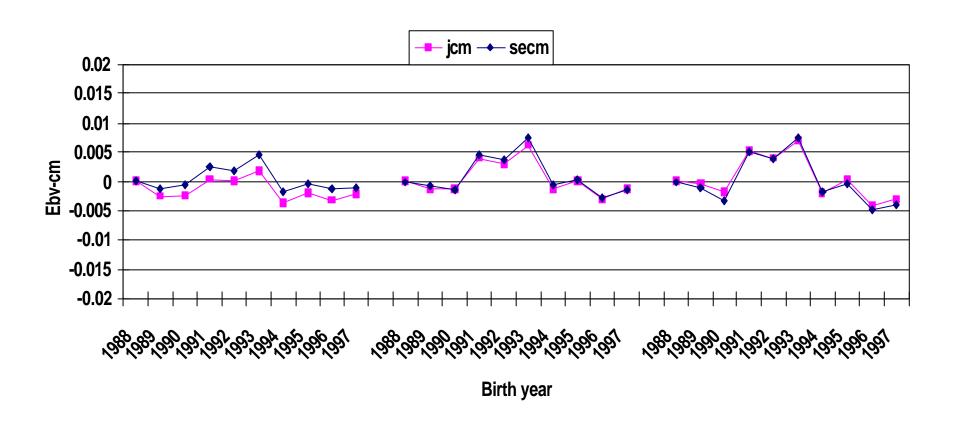
Correlations between EBVs from randomly split data sets

	•	Models					
Doughtoro	<u>Univ</u>	<u> /ariate</u>	Multi	variate			
Daughters per sire	SCC	CM	SCC	CM			
20-100	0.635	0.601	0.640	0.674			
101-200	0.740	0.651	0.750	0.688			
>200	0.841	0.611	0.843	0.746			

Genetic trend for CM from joint multivariate (bcm) Vs univariate (ucm) model


Results

II. Across country vs. within country model


Correlations between EBVs from joint across country Vs. within country models

			Traits					
		No	SCC			CM		
Country	Group of bulls	No. Bulls	scc1	scc2	scc3	cm1	cm2	cm3
FINLAND	(1991- 93)	338	0.98	0.97	0.97	0.99	0.98	0.97
	(1995-97)	215	0.96	0.96	0.95	0.99	0.98	0.98
SWEDEN	(1991- 93)	329	0.99	0.99	0.99	0.99	0.99	0.99
	(1995-97)	219	0.99	0.98	0.97	0.97	0.97	0.97

Finnish within country vs. joint across country model for CM

Swedish within country vs. joint across country model for CM

Conclusions

- More accutrate prediction of EBVs for CM from MT model.
- MT model stable for predicting breeding value solutions in future records of animals.
- ¤ Good agreement between the joint and national models.